393 research outputs found

    On the Detectability of Oxygen X-ray Fluorescence and its Use as a Solar Photospheric Abundance Diagnostic

    Full text link
    Monte Carlo calculations of the O Kalpha line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While quite weak, we estimate line equivalent widths in the range 0.02-0.2 AA, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T =< 3e6 K and should be quite observable, with a flux >~ 2 ph/s/arcmin^2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35-60% changes in O Kalpha line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with ``high'' and ``low'' complements of the CNO trio important for interpreting helioseismological observations is less accute, amounting to 20-26% at coronal temperatures T ~< 2e6 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >= 1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar ``oxygen crisis''.Comment: To appear in the Astrophysical Journa

    The Stellar Activity - Rotation Relationship

    Get PDF
    Using a new catalog of 824 solar and late-type stars with X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity. From an unbiased subset of this sample the power law slope of the unsaturated regime, LX/LbolRoβL_X/L_{bol}\propto Ro^\beta, is fit as β=2.70±0.13\beta=-2.70\pm0.13. This is inconsistent with the canonical β=2\beta=-2 slope to a confidence of 5σ\sigma and argues for an interface-type dynamo. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory being supported by other observations. We also present a new X-ray population synthesis model of the mature stellar component of our Galaxy and use it to reproduce deep observations of a high Galactic latitude field. The model, XStar, can be used to test models of stellar spin-down and dynamo decay, as well as for estimating stellar X-ray contamination rates for non-stellar studies.Comment: 4 pages, 4 figures. To appear in the proceedings of Cool Stars 17: 17th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, AN 334, 1-2, Eds Klaus Strassmeier and Mercedes Lopez-Morale
    corecore