27 research outputs found

    Walk well:a randomised controlled trial of a walking intervention for adults with intellectual disabilities: study protocol

    Get PDF
    Background - Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design - This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion - Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities

    Assessment of Objectively Measured Physical Activity Levels in Individuals with Intellectual Disabilities with and without Down's Syndrome

    Get PDF
    Objective: To investigate, using accelerometers, the levels of physical activity being undertaken by individuals with intellectual disabilities with and without Down’s syndrome. Methods: One hundred and fifty two individuals with intellectual disabilities aged 12–70 years from East and South-East England. Physical activity levels in counts per minute (counts/min), steps per day (steps/day), and minutes of sedentary, light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) measured with a uni-axial accelerometer (Actigraph GT1M) for seven days. Results: No individuals with intellectual disabilities met current physical activity recommendations. Males were more active than females. There was a trend for physical activity to decline and sedentary behaviour to increase with age, and for those with more severe levels of intellectual disability to be more sedentary and less physically active, however any relationship was not significant when adjusted for confounding variables. Participants with Down’s syndrome engaged in significantly less physical activity than those with intellectual disabilities without Down’s syndrome and levels of activity declined significantly with age. Conclusions: Individuals with intellectual disabilities, especially those with Down’s syndrome may be at risk of developing diseases associated with physical inactivity. There is a need for well-designed, accessible, preventive health promotio

    A-002 (Varespladib), a phospholipase A2 inhibitor, reduces atherosclerosis in guinea pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association of elevated serum levels of secretory phospholipase A<sub>2 </sub>(sPLA<sub>2</sub>) in patients with cardiovascular disease and their presence in atherosclerotic lesions suggest the participation of sPLA<sub>2 </sub>enzymes in this disease. The presence of more advanced atherosclerotic lesions in mice that overexpress sPLA<sub>2 </sub>enzymes suggest their involvement in the atherosclerotic process. Therefore, the sPLA<sub>2 </sub>family of enzymes could provide reasonable targets for the prevention and treatment of atherosclerosis. Thus, A-002 (varespladib), an inhibitor of sPLA<sub>2</sub>enzymes, is proposed to modulate the development of atherosclerosis.</p> <p>Methods</p> <p>Twenty-four guinea pigs were fed a high saturated fat, high cholesterol diet (0.25%) for twelve weeks. Animals were treated daily with A-002 (n = 12) or vehicle (10% aqueous acacia; n = 12) by oral gavage. After twelve weeks, animals were sacrificed and plasma, heart and aorta were collected. Plasma lipids were measured by enzymatic methods, lipoprotein particles size by nuclear magnetic resonance, aortic cytokines by a colorimetric method, and aortic sinus by histological analyses.</p> <p>Results</p> <p>Plasma total cholesterol, HDL cholesterol and triglycerides were not different among groups. However, the levels of inflammatory cytokines interleukin (IL)-10, IL-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly reduced in the treatment group. This group also had a significant 27% reduction in cholesterol accumulation in aorta compared with placebo group. Morphological analysis of aortic sinus revealed that the group treated with A-002 reduced atherosclerotic lesions by 24%.</p> <p>Conclusion</p> <p>The use of A-002 may have a beneficial effect in preventing diet-induced atherosclerosis in guinea pigs.</p

    Comparative mRNA and microRNA Expression Profiling of Three Genitourinary Cancers Reveals Common Hallmarks and Cancer-Specific Molecular Events

    Get PDF
    Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA) in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or therapeutic applications

    Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola

    Get PDF
    In a variable yet predictable world, organisms may use environmental cues to make adaptive adjustments to their phenotype. Such phenotypic flexibility is expected commonly to evolve in life history traits, which are closely tied to Darwinian fitness. Yet adaptive life history flexibility remains poorly documented. Here we introduce the collembolan Folsomia candida, a soil-dweller, parthenogenetic (all-female) microarthropod, as a model organism to study the phenotypic expression, genetic variation, fitness consequences and long-term evolution of life history flexibility. We demonstrate that collembola have a remarkable adaptive ability for adjusting their reproductive phenotype: when transferred from harsh to good conditions (in terms of food ration and crowding), a mother can fine-tune the number and the size of her eggs from one clutch to the next. The comparative analysis of eleven clonal populations of worldwide origins reveals (i) genetic variation in mean egg size under both good and bad conditions; (ii) no genetic variation in egg size flexibility, consistent with convergent evolution to a common physiological limit; (iii) genetic variation of both mean reproductive investment and reproductive investment flexibility, associated with a reversal of the genetic correlation between egg size and clutch size between environmental conditions ; (iv) a negative genetic correlation between reproductive investment flexibility and adult lifespan. Phylogenetic reconstruction shows that two life history strategies, called HIFLEX and LOFLEX, evolved early in evolutionary history. HIFLEX includes six of our 11 clones, and is characterized by large mean egg size and reproductive investment, high reproductive investment flexibility, and low adult survival. LOFLEX (the other five clones) has small mean egg size and low reproductive investment, low reproductive investment flexibility, and high adult survival. The divergence of HIFLEX and LOFLEX could represent different adaptations to environments differing in mean quality and variability, or indicate that a genetic polymorphism of reproductive investment reaction norms has evolved under a physiological tradeoff between reproductive investment flexibility and adult lifespan

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population
    corecore