748 research outputs found

    Measurements of observables sensitive to colour reconnection in ¯ events with the ATLAS detector at √ = 13 TeV

    Get PDF
    A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb−1 of 13 TeV proton–proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be b-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators

    ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

    Get PDF
    A summary of the constraints from searches performed by the ATLAS collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb−1 of proton-proton data at a centre-of-mass energy of √ = 13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson ‘funnel regions’, where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented

    Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at √s=13 TeV

    Get PDF
    Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb̅bb̅, bb̅τ+τ− and bb̅γγ decay channels with single-Higgs boson analyses targeting the γγ, ZZ∗, WW∗, τ+τ− and bb̅ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton–proton collisions at √s = 13 TeV and correspond to an integrated luminosity of 126–139 fb−1. The combination of the double-Higgs analyses sets an upper limit of μHH <2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (λHHH ), values outside the interval −0.4 < κλ = (λHHH /λSMHHH) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes −1.4 < κλ < 6.1 at 95% CL

    ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset

    Get PDF
    The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of √s = 13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained

    Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

    Get PDF
    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb−1 of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the WZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level

    A precise measurement of the Z -boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s = 8 TeV

    Get PDF
    This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at s=8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb-1. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum pT and rapidity y are measured in the pole region, defined as 8

    Test of CP-invariance of the Higgs boson in vector-boson fusion production and in its decay into four leptons

    Get PDF
    A search for CP violation in the decay kinematics and vector-boson fusion production of the Higgs boson is performed in the H → ZZ* → 4ℓ (ℓ = e, μ) decay channel. The results are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, corresponding to an integrated luminosity of 139 fb−1. Matrix element-based optimal observables are used to constrain CP-odd couplings beyond the Standard Model in the framework of Standard Model effective field theory expressed in the Warsaw and Higgs bases. Differential fiducial cross-section measurements of the optimal observables are also performed, and a new fiducial cross-section measurement for vector-boson-fusion production is provided. All measurements are in agreement with the Standard Model prediction of a CP-even Higgs boson

    Measurement of the total and differential cross-sections of t t ¯ W production in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a W boson (tt¯W) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on s = 13 TeV proton-proton collision data with an integrated luminosity of 140 fb−1, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive tt¯W production cross-section is measured to be 880 ± 80 fb, compared to a reference theoretical prediction of 745 ± 50 (scale) ± 13 (2-loop approx.) ± 19 (PDF, αs) fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of tt¯W+ and tt¯W− is measured inclusively to be ACrel = 0.33 ± 0.05, in very good agreement with the theoretical prediction of 0.322 ± 0.003 (scale) ± 0.007 (PDF), as well as differentially

    Search for leptoquark pair production decaying into t e - t ¯ e + or t μ - t ¯ μ + in multi-lepton final states in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario

    Inclusive and differential cross-section measurements of t t ¯ Z production in pp collisions at s = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations

    Get PDF
    Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations
    corecore