2 research outputs found

    Mhd flow and heat transfer of two immiscible fluids with induced magnetic field effects

    No full text
    The paper investigates the magnetohydrodynamic flow of two immiscible, electrically conducting fluids between isothermal and insulated moving plates in the presence of an applied electric and inclined magnetic field with the effects of induced magnetic field. Partial differential equations governing the flow and heat transfer and magnetic field conservation are transformed to ordinary differential equations and solved exactly in both fluid regions, under physically appropriate boundary and interface conditions. Closed-form expressions are obtained for the non-dimensional velocity, non-dimensional induced magnetic field and nondimensional temperature. The analytical results for various values of the Hartmann number, the angle of magnetic field inclination, loading parameter and the ratio of platesā€™ velocities are presented graphically to show their effect on the flow and heat transfer characteristics. [Projekat Ministarstva nauke Republike Srbije, br. TR 35016

    UNSTEADY PLANE MHD BOUNDARY LAYER FLOW OF A FLUID OF VARIABLE ELECTRICAL CONDUCTIVITY

    No full text
    This paper is devoted to the analysis of unsteady plane laminar magnetohydrodynamic (MHD) boundary layer flow of incompressible and variable electrical conductivity fluid. The present magnetic field is homogenous and perpendicular to the body surface. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in induction-less approximation. Free stream velocity is an arbitrary differentiable function. Fluid electrical conductivity is decreasing function of velocity ratio. In order to solve the described problem multiparametric (generalized similarity) method is used and so-called universal equations are obtained. Obtained universal equations are solved numerically in appropriate approximation and a part of obtained results is given in the form of figures and corresponding conclusions
    corecore