11 research outputs found

    Genetic Variation of Superoxide Dismutases in Patients with Primary Open-angle Glaucoma

    No full text
    Abstract Purpose: Oxidative stress has been described as an underlying pathogenetic mechanism in retinal ganglion cell apoptosis, which is a hallmark of primary open-angle glaucoma (POAG). Superoxide dismutases (SODs) are enzymes involved in the protection against oxidative stress by detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) in the copper-zinc-containing SOD1 and SOD3, and in the manganese superoxide dismutase SOD2, in POAG patients. Methods: The study included 239 patients with POAG and 185 controls, all of Estonian origin, recruited at two ophthalmic clinics in Tartu, Estonia. Eleven SNPs, either functional, disease-associated or tag SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. Results: Using binary logistic regression in an additive model, the rs2842980 SNP in SOD2 was significantly associated with POAG diagnosis (p = 0.03) at a univariate level. None of the studied SNPs showed an association with risk of POAG in a multivariate analysis, including age and current smoking as covariates. Analysis of SOD2 haplotypes did not show any association with risk of POAG. Conclusions: If oxidative stress is an important mechanism in POAG-related retinal ganglion cell death, genetic variations in SOD1, SOD2 and SOD3 are not major contributors in the pathogenesis

    Genetic Variation of Superoxide Dismutases in Patients with Primary Open-angle Glaucoma

    No full text
    Abstract Purpose: Oxidative stress has been described as an underlying pathogenetic mechanism in retinal ganglion cell apoptosis, which is a hallmark of primary open-angle glaucoma (POAG). Superoxide dismutases (SODs) are enzymes involved in the protection against oxidative stress by detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) in the copper-zinc-containing SOD1 and SOD3, and in the manganese superoxide dismutase SOD2, in POAG patients. Methods: The study included 239 patients with POAG and 185 controls, all of Estonian origin, recruited at two ophthalmic clinics in Tartu, Estonia. Eleven SNPs, either functional, disease-associated or tag SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. Results: Using binary logistic regression in an additive model, the rs2842980 SNP in SOD2 was significantly associated with POAG diagnosis (p = 0.03) at a univariate level. None of the studied SNPs showed an association with risk of POAG in a multivariate analysis, including age and current smoking as covariates. Analysis of SOD2 haplotypes did not show any association with risk of POAG. Conclusions: If oxidative stress is an important mechanism in POAG-related retinal ganglion cell death, genetic variations in SOD1, SOD2 and SOD3 are not major contributors in the pathogenesis

    Superoxide dismutase gene polymorphisms in patients with age-related cataract

    No full text
    BACKGROUND: Functional polymorphisms in genes encoding antioxidant enzymes may result in reduced enzyme activity and increased levels of reactive oxygen species, such as superoxide radicals, which in turn may contribute to increased risk of age-related disorders. Copper-zinc superoxide dismutases, SOD-1 and SOD-3, and manganese superoxide dismutase, SOD-2, are enzymes involved in the protection against oxidative stress and detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) of SOD1, SOD2 and SOD3, in patients with age-related cataract. MATERIALS AND METHODS: The study included an Estonian sample of 492 patients with age-related cataract, subgrouped into nuclear, cortical, posterior subcapsular and mixed cataract, and 185 controls. Twelve SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. RESULTS: None of the studied SNPs showed an association with risk of cataract. These results were consistent after adding known risk factors (age, sex and smoking) as covariates in the multivariate analyses and after stratification by cataract subtype. Analysis of SOD2 haplotypes did not show any associations with risk of cataract. CONCLUSIONS: If genetic variation in genes encoding SOD-1, SOD-2 and SOD-3 contributes to cataract formation, there is no major contribution of the SNPs analyzed in the present study

    Association of Nrf2-encoding <it>NFE2L2 </it>haplotypes with Parkinson's disease

    No full text
    Abstract Background Oxidative stress is heavily implicated in the pathogenic process of Parkinson's disease. Varying capacity to detoxify radical oxygen species through induction of phase II antioxidant enzymes in substantia nigra may influence disease risk. Here, we hypothesize that variation in NFE2L2 and KEAP1, the genes encoding the two major regulators of the phase II response, may affect the risk of Parkinson's disease. Methods The study included a Swedish discovery case-control material (165 cases and 190 controls) and a Polish replication case-control material (192 cases and 192 controls). Eight tag single nucleotide polymorphisms representing the variation in NFE2L2 and three representing the variation in KEAP1 were chosen using HapMap data and were genotyped using TaqMan Allelic Discrimination. Results We identified a protective NFE2L2 haplotype in both of our European case-control materials. Each haplotype allele was associated with five years later age at onset of the disease (p = 0.001) in the Swedish material, and decreased risk of PD (p = 2 Ă— 10-6), with an odds ratio of 0.4 (95% CI 0.3-0.6) for heterozygous and 0.2 (95% CI 0.1-0.4) for homozygous carriers, in the Polish material. The identified haplotype includes a functional promoter haplotype previously associated with high transcriptional activity. Genetic variation in KEAP1 did not show any associations. Conclusion These data suggest that variation in NFE2L2 modifies the Parkinson's disease process and provide another link between oxidative stress and neurodegeneration.</p

    Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson\u27s disease.

    Get PDF
    BACKGROUND: Oxidative stress is heavily implicated in the pathogenic process of Parkinson\u27s disease. Varying capacity to detoxify radical oxygen species through induction of phase II antioxidant enzymes in substantia nigra may influence disease risk. Here, we hypothesize that variation in NFE2L2 and KEAP1, the genes encoding the two major regulators of the phase II response, may affect the risk of Parkinson\u27s disease. METHODS: The study included a Swedish discovery case-control material (165 cases and 190 controls) and a Polish replication case-control material (192 cases and 192 controls). Eight tag single nucleotide polymorphisms representing the variation in NFE2L2 and three representing the variation in KEAP1 were chosen using HapMap data and were genotyped using TaqMan Allelic Discrimination. RESULTS: We identified a protective NFE2L2 haplotype in both of our European case-control materials. Each haplotype allele was associated with five years later age at onset of the disease (p = 0.001) in the Swedish material, and decreased risk of PD (p = 2 x 10(-6)), with an odds ratio of 0.4 (95% CI 0.3-0.6) for heterozygous and 0.2 (95% CI 0.1-0.4) for homozygous carriers, in the Polish material. The identified haplotype includes a functional promoter haplotype previously associated with high transcriptional activity. Genetic variation in KEAP1 did not show any associations. CONCLUSION: These data suggest that variation in NFE2L2 modifies the Parkinson\u27s disease process and provide another link between oxidative stress and neurodegeneration
    corecore