20 research outputs found

    PREDICTION OF SEVERITIES OF BUGS WITH LEVELS AND TYPES OF INHERITANCE

    Get PDF
    ABSTRACT Past researches have attributed level of inheritance as major contributor of effectiveness in prediction of severities of bugs. This research initially attempts to correlate effectiveness of prediction of severities of bugs with levels of inheritance. This research also attempts to take a step further by correlating the prediction of severities of bugs with types of inheritance as well. This present research has considered different levels of inheritance and has established a correlation framework for severities of bugs (non trivial bugs, major bugs, and critical bugs) with types and levels of inheritance. This research has successfully revealed that the severities of bugs can be associated with different levels and types of inheritance and has further concluded that with increasing levels as well as complexity of types of inheritance, the severity of bugs will also increase. In this research work, two back-propagation training functions such as Broyden-FletcherGoldfarb-Shanno (BFG) and LevenbergMarquardt (LM) have been selected for evaluation. The present research work has used these two training functions to validate the results on the basis of mean square error (MSE), prediction accuracy, R on testing, R on training and R on validation. The present research has generated sufficient interest with the help of correlation framework associating levels and types of inheritance with severities of bugs. The present research work has also resulted in development of a tool for demonstrating type of inheritance (single inheritance, multilevel inheritance, hierarchical inheritance, and multiple inheritances) associated with each file containing bugs. Furthermore, the findings are of growing importance suggesting that levels and types of inheritance need to be rationalized in order to contain severities of bugs for effective quality control in software project

    The role of cranial CT in the investigation of meningitis

    Get PDF
    More patients with meningitis are undergoing CT and the number of inappropriate requests are increasing. There are few abnormal CT scans presenting a contraindication for lumbar puncture and the majority of these patients usually have clinical signs to suggest raised intracranial pressure

    Daily Sampling of an HIV-1 Patient with Slowly Progressing Disease Displays Persistence of Multiple env Subpopulations Consistent with Neutrality

    Get PDF
    The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+ T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after this period (days −664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were obtained from plasma by limiting dilution with 7–11 sequences per time point, except day −664. Phylogenetic analysis using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days 1…32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but positive selection was evident on the long branches that connected the subpopulations, which corresponds to >3 years as the subpopulations already were established when we started the study. Thus, selective forces may have been involved when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the short-term evolution we study here is likely representative for many patients of slow and normal disease progression

    Adoption of an “Open” Envelope Conformation Facilitating CD4 Binding and Structural Remodeling Precedes Coreceptor Switch in R5 SHIV-Infected Macaques

    Get PDF
    A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more “open” envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an “open” envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch
    corecore