17,190 research outputs found
Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system
Oscillations in local field potentials in the β-frequency band (13-35 Hz) are a pervasive feature of human and nonhuman primate motor cortical areas. However, the function of such synchronous activity across populations of neurons remains unknown. Here, we test the hypothesis that β activity may promote existing motor set and posture while compromising processing related to new movements. Three experiments were performed. First, healthy subjects were instructed to make reaction time movements of the outstretched index finger in response to imperative cues triggered by transient increases in corticospinal synchrony, as evidenced by phasic elevations of β-frequency band microtremor and intermuscular synchrony. Second, healthy subjects were instructed to resist a stretch to the index finger triggered in the same way. Finger acceleration in the reaction time task and transcortical components of the stretch reflex were measured and compared with those elicited by random cue or stretch presentation. Finally, we sought a correlation between finger acceleration in the reaction time task and cortical synchrony directly measured from the electrocorticogram in two patients undergoing functional neurosurgery. We demonstrate that movements are slowed and transcortical responses to stretch are potentiated during periods of elevated β-band cortical synchrony. The results suggest that physiological periods of β synchrony are associated with a cortical state in which postural set is reinforced, but the speed of new movements impaired. The findings are of relevance to Parkinson's disease, in which subcortical and cortical β-band synchronization is exaggerated in the setting of increased tone and slowed movements
Planetological implications of mass loss from the early Sun
The element lithium is observed to be underabundant in the Sun by a factor of approx. equal to 100. To account for this depletion, Boothroyd et al. (Ap. J., in press 1991) proposed a model in which the Sun's zero-age-main-sequence mass was approx. 1.1 solar magnitude. If this is the explanation for the lithium depletion, then astronomical observations of F/G dwarfs in clusters suggest that the timescale for mass loss is approx. equal to 0.6 Gyr. Assuming this approximate timescale, the authors investigated several planetological implications of the astrophysical model
Management systems for sheep.
Trial 89KA6
Location: Kojonup
To measure the effects of set stocking and strip (ration) grazing on:
i) Pasture production, composition and quantity
ii) Sheep production (liveweight, condition score, wool growth rate, fibre diameter, strength and vegetable matter contamination)
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed
GaAs(111)A and B in hydrazine sulfide solutions : extreme polarity dependence of surface adsorption processes
Chemical bonds formed by hydrazine-sulfide treatment of GaAs(111) were
studied by synchrotron photoemission spectroscopy. At the B surface, the top
arsenic atoms are replaced by nitrogen atoms, while GaAs(111)A is covered by
sulfur, also bonded to underlying gallium, despite the sulfide molar
concentration being 103 times smaller than that of the hydrazine. This extreme
dependence on surface polarity is explained by competitive adsorption processes
of HS- and OH- anions and of hydrazine molecules, on Ga- adsorption sites,
which have distinct configurations on the A and B surfaces
Collaboration and contestation in further and higher education partnerships in England: a Bourdieusian field analysis
Internationally, âCollege for Allâ policies are creating new forms of vocational higher education (HE), and shifting relationships between HE and further education (FE) institutions. In this paper, we consider the way in which this is being implemented in England, drawing on a detailed qualitative case study of a regional HEâFE partnership to widen participation. We focus on the complex mix of collaboration and contestation that arose within it, and how these affected socially differentiated groups of students following high- and low-status routes through its provision. We outline Bourdieuâs concept of âfieldâ as a framework for our analysis and interpretation, including its theoretical ambiguities regarding the definition and scale of fields. Through hermeneutic dialogue between data and theory, we tentatively suggest that such partnerships represent bridges between HE and FE. These bridges are strong between higher-status institutions, but highly contested between lower-status institutions competing closely for distinction. We conclude that the trajectories and outcomes for socially disadvantaged students require attention and collective action to address the inequalities they face, and that our theoretical approach may have wider international relevance beyond the English case
Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity
Opacity is a property of many plasmas, and it is normally expected that if an
emission line in a plasma becomes optically thick, its intensity ratio to that
of another transition that remains optically thin should decrease. However,
radiative transfer calculations undertaken both by ourselves and others predict
that under certain conditions the intensity ratio of an optically thick to thin
line can show an increase over the optically thin value, indicating an
enhancement in the former. These conditions include the geometry of the
emitting plasma and its orientation to the observer. A similar effect can take
place between lines of differing optical depth. Previous observational studies
have focused on stellar point sources, and here we investigate the
spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038
A) intensity ratio of O VI in several regions obtained with the Solar
Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the
Solar and Heliospheric Observatory (SoHO) satellite. We find several I(1032
A)/I(1038 A) ratios observed on the disk to be significantly larger than the
optically thin value of 2.0, providing the first detection (to our knowledge)
of intensity enhancement in the ratio arising from opacity effects in the solar
atmosphere. Agreement between observation and theory is excellent, and confirms
that the O VI emission originates from a slab-like geometry in the solar
atmosphere, rather than from cylindrical structures.Comment: 17 pages, 4 figures, ApJ Letters, in pres
First principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets
Recently it was demonstrated (Schattschneider et al., Nature 441 (2006),
486), that an analogue of the X-ray magnetic circular dichroism (XMCD)
experiment can be performed with the transmission electron microscope (TEM).
The new phenomenon has been named energy-loss magnetic chiral dichroism (EMCD).
In this work we present a detailed ab initio study of the chiral dichroism in
the Fe, Co and Ni transition elements. We discuss the methods used for the
simulations together with the validity and accuracy of the treatment, which
can, in principle, apply to any given crystalline specimen. The dependence of
the dichroic signal on the sample thickness, accuracy of the detector position
and the size of convergence and collection angles is calculated.Comment: 9 pages, 6 figures, submitted to Physical Review
Recommended from our members
Real-world Gyroscope-based Gait Event Detection and Gait Feature Extraction
Falls in older adults are a major clinical problem often resulting in serious injury. The costly nature of clinic-based testing for the propensity of falling and a move towards homebased care and monitoring of older adults has led to research in wearable sensing technologies for identifying fall-related parameters from activities of daily living. This paper discusses the development of two algorithms for identifying periods of walking (gait events) and extracting characteristic patterns for each gait event (gait features) with a view to identifying the propensity to fall in older adults. In this paper, we present an evaluation of the algorithms involving a small real-world dataset collected from healthy adults in an uncontrolled environment. 92.5% of gait events were extracted from lower leg gyroscope data from 5 healthy adults (total duration of 33 hours) and over 95% of the gait characteristic points were identified in this data. A user interface to aid clinicians review gait features from walking events captured over multiple days is also proposed. The work presents initial steps in the development of a platform for monitoring patients within their daily routine in uncontrolled environments to inform clinical decision-making related to falls
- âŚ