4 research outputs found

    A Testis-Specific Chaperone and the Chromatin Remodeler ISWI Mediate Repackaging of the Paternal Genome

    Get PDF
    During spermatogenesis, the paternal genome is repackaged into a non-nucleosomal, highly compacted chromatin structure. Bioinformatic analysis revealed that Drosophila sperm chromatin proteins are characterized by a motif related to the high-mobility group (HMG) box, which we termed male-specific transcript (MST)-HMG box. MST77F is a MST-HMG-box protein that forms an essential component of sperm chromatin. The deposition of MST77F onto the paternal genome requires the chaperone function of tNAP, a testis-specific NAP protein. MST77F, in turn, enables the stable incorporation of MST35Ba and MST35Bb into sperm chromatin. Following MST-HMG-box protein deposition, the ATP-dependent chromatin remodeler ISWI mediates the appropriate organization of sperm chromatin. Conversely, at fertilization, maternal ISWI targets the paternal genome and drives its repackaging into de-condensed nucleosomal chromatin. Failure of this transition in ISWI mutant embryos is followed by mitotic defects, aneuploidy, and haploid embryonic divisions. Thus, ISWI enables bi-directional transitions between two fundamentally different forms of chromatin

    Subunits of the Histone Chaperone CAF1 Also Mediate Assembly of Protamine-Based Chromatin

    Get PDF
    One of the most dramatic forms of chromatin reorganization occurs during spermatogenesis, when the paternal genome is repackaged from a nucleosomal to a protamine-based structure. We assessed the role of the canonical histone chaperone CAF1 in Drosophila spermatogenesis. In this process, CAF1 does not behave as a complex, but its subunits display distinct chromatin dynamics. During histone-to-protamine replacement, CAF1-p180 dissociates from the DNA while CAF1-p75 binds and stays on as a component of sperm chromatin. Association of CAF1-p75 with the paternal genome depends on CAF1-p180 and protamines. Conversely, CAF1-p75 binds protamines and is required for their incorporation into sperm chromatin. Histone removal, however, occurs independently of CAF1 or protamines. Thus, CAF1-p180 and CAF1-p75 function in a temporal hierarchy during sperm chromatin assembly, with CAF1-p75 acting as a protamine-loading factor. These results show that CAF1 subunits mediate the assembly of two fundamentally different forms of chromatin

    Histone Chaperone NAP1 Mediates Sister Chromatid Resolution by Counteracting Protein Phosphatase 2A

    Get PDF
    Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis
    corecore