12 research outputs found

    "The Time of the Most Polar Bears": A Co-management Conflict in Nunavut

    Get PDF
    Since the 1990s, Inuit traditional knowledge (Inuit Qaujimajatuqangit) has taken on a substantial role in polar bear management in the Canadian territory of Nunavut through its direct use in quota-setting procedures. A co-management conflict has arisen from an increase of hunting quotas in January 2005 for Inuit living in the Baffin Bay and Western Hudson Bay polar bear population areas. The quotas were based on Inuit observations and their conclusion that these polar bear populations had increased. Scientific information suggests that climate change has concentrated polar bears in areas where humans are more likely to encounter them, but that the populations are in decline as a result of overhunting and climate-change effects on demographic rates. During consultations with wildlife managers and through other interviews in 2005, Inuit indicated their lack of support for quota reductions. Discussions with Inuit reveal two categories of problems that, though couched in the polar bear management issue, involve the co-management system and the integration of Inuit and scientific knowledge more generally. The first relates to direct observations of the environment by both Inuit and scientists and the synthesis of such information. The second relates to Inuit conceptualizations of human-animal relationships and the incorporation of scientific studies and management into that relationship. These problems reveal that differences between Inuit Qaujimajatuqangit and scientific knowledge are not fully understood and accounted for within the co-management system and that the system does not effectively integrate Inuit cultural views into management.Depuis les années 1990, les connaissances traditionnelles des Inuits (Inuit Qaujimajatuqangit) jouent un grand rôle dans la gestion des ours polaires du territoire canadien du Nunavut et ce, grâce au recours direct aux quotas. Un conflit de co-gestion s’est déclaré en raison de l’augmentation des quotas de chasse en janvier 2005 chez les Inuits vivant dans les régions peuplées d’ours polaires de la baie de Baffin et de l’ouest de la baie d’Hudson. Les quotas avaient été établis en fonction des observations faites par les Inuits et de leur conclusion selon laquelle les populations d’ours polaires étaient à la hausse. Pour leur part, les données scientifiques laissent entendre que le changement climatique a fait en sorte que les ours polaires se concentrent dans des régions où les humains sont plus susceptibles de les rencontrer, mais que les populations connaissent une diminution en raison de la chasse abusive et des effets du changement climatique sur les taux démographiques. Dans le cadre de consultations avec des gestionnaires de la faune et d’entrevues réalisées en 2005, les Inuits ont mentionné qu’ils n’appuyaient pas la réduction des quotas. D’après les discussions entretenues avec les Inuits, les problèmes font partie de deux catégories même si celles-ci relèvent toutes deux de l’enjeu de la gestion des ours polaires, soit le système de co-gestion, ainsi que l’intégration des connaissances des Inuits et des connaissances scientifiques de manière plus générale. Le premier problème a trait aux observations directes de l’environnement réalisées tant par les Inuits que par les scientifiques, ainsi qu’à la synthèse de cette information. Le deuxième problème se rapporte aux conceptualisations des Inuits en matière de relations entre les humains et les animaux ainsi qu’à l’intégration des études scientifiques et de la gestion à cette relation. Ces problèmes révèlent que les différences entre les connaissances inuites (Qaujimajatuqangit) et les connaissances scientifiques ne sont pas entièrement comprises et considérées dans le cadre du système de co-gestion, et que le système n’intègre pas efficacement les points de vue culturels des Inuits à la gestion

    Two Great Black-backed Gulls, Larus marinus, Kill Male Longtailed Duck, Clangula hyemalis

    Get PDF
    At Presqu’ile Point, Presqu’ile Provincial Park, Ontario on 23 March 2003, while interpreting the waterfowl migration for park visitors, we witnessed two adult Great Black-backed Gulls attack and kill a male Long-tailed Duck

    Should we turn the tent? Inuit women and climate change

    Get PDF
    Most of the climate change literature for Arctic Canada in the social sciences has focused on men’s knowledge and experiences. Drawing on research from Qikiqtarjuaq and Clyde River, Nunavut, we explore Inuit women’s perspectives on recent environmental changes, many of which are often attributed to climate change by Inuit or others. We divide issues resulting from environmental change into primary and secondary effects. Primary effects are changes in environmental features that affect, for example, hunting, fishing, and travelling. Secondary effects occur in the community as a result of environmental change. These include changes in the use and condition of country products like seal skins, and the psychological and social impact of environmental changes, such as going out on the land less often due to fear of dangerous conditions. We also offer a preliminary discussion on women’s role in responses to climate change, through their often dominant economic and political roles in their communities, the territory, and various wider global governance fora. Our research indicates that gender helps shape Inuit knowledge of environmental change, as well as social responses to perceptions of change. By examining women’s perceptions of environmental change, we draw attention to the social aspects and also highlight how women can contribute to adaptation, not only to physical changes but also to the resulting social changes.La majeure partie des publications en sciences sociales sur le changement climatique dans l’Arctique canadien a mis l’accent sur les connaissances et les expériences des hommes. En nous appuyant sur des recherches faites à Qikiqtarjuaq et Clyde River, au Nunavut, nous explorons les perspectives des femmes inuit sur les récents changements environnementaux, dont plusieurs sont souvent attribués aux changements climatiques par les Inuit ou d'autres personnes. Nous séparons les enjeux résultant des changements environnementaux en effets primaires et secondaires. Les effets primaires sont des changements environnementaux qui touchent, par exemple, la chasse, la pêche et les voyages. Les effets secondaires se produisent dans la communauté à la suite des changements environnementaux. Ces derniers sont notamment des changements dans l'utilisation et l’état des produits dérivés de la chasse, comme les peaux de phoque, et l’impact psychologique et social des changements environnementaux, notamment la diminution des sorties en dehors de la communauté en raison de la crainte de conditions dangereuses. Nous offrons également une discussion préliminaire sur le rôle des femmes dans les réponses au changement climatique, à travers leurs rôles économiques et politiques souvent dominants dans leurs communautés, sur le territoire, et par le biais de divers forums de gouvernance mondiale. Nos recherches indiquent que le sexe des individus joue un rôle dans l’élaboration des connaissances des Inuit sur les changements environnementaux, ainsi que dans les réponses sociales à la perception du changement. L’examen des perceptions des femmes sur les changements environnementaux a attiré notre attention sur les aspects sociaux de cet enjeu et met également en évidence comment les femmes peuvent contribuer à l’adaptation, non seulement à des changements physiques, mais aussi aux changements sociaux qui en découlent

    Do North American Migratory Barren-Ground Caribou Subpopulations Cycle?

    Get PDF
    Unlike all other members of the deer family, subpopulations of barren-ground caribou (Rangifer tarandus groenlandicus) are typically sine-cyclic. We used Bayesian Information Criteria (BIC) to rank competing population dynamics models for 11 North American barren-ground caribou subpopulations. Nine of these subpopulations were best described as sine-cyclic with periods ranging from a minimum of 26 years (Bluenose-East and Porcupine) to a maximum of 55 years (Western Arctic); and amplitudes ranging from a minimum of 8 455 (Cape Bathurst) to a maximum of 327 432 (George River). Time series estimates of subpopulation abundance generated by the sine cycle models showed good correspondence to published subpopulation estimates of abundance for all nine sine-cyclic subpopulations (r = 0.978; p < 0.001). Lack of demographic closure (migration between subpopulations) was evident in both of the subpopulations that were not identified as sine-cyclic. Barren-ground caribou subpopulation amplitudes were mostly determined by subpopulation total range size and summer range productivity (R2 = 0.962; p < 0.001) and subpopulation periods were mostly determined by amplitude, total range productivity, and land surface temperature (R2 = 0.950; p < 0.001). Time series estimates of subpopulation abundance generated from the respective environmental regression models were highly correlated (r = 0.964; p < 0.001) to the published subpopulation estimates of abundance for the set of 9 sine-cyclic subpopulations. Extended (> 3 generations) subpopulation declines are a natural feature of cyclic barren-ground caribou subpopulations. Trends in species abundance based on pooled assemblages of asynchronous cyclic subpopulations should be interpreted with caution.Contrairement Ă  tous les autres membres de la famille des cervidĂ©s, les sous-populations de caribous de la toundra (Rangifer tarandus groenlandicus) suivent gĂ©nĂ©ralement un cycle sinusoĂŻdal. Nous avons employĂ© des critères d’information bayĂ©siens (BIC) pour classer des modèles de dynamique des populations concurrentiels pour 11 sous-populations nord-amĂ©ricaines de caribous de la toundra. Neuf de ces sous-populations correspondaient mieux Ă  une description de cycle sinusoĂŻdal avec des pĂ©riodes allant d’un minimum de 26 ans (Bluenose-Est et Porcupine) Ă  un maximum de 55 ans (Arctique de l’Ouest); et des amplitudes allant d’un minimum de 8 455 (cap Bathurst) Ă  un maximum de 327 432 (rivière George). Les estimations des sĂ©ries chronologiques de l’abondance des sous-populations obtenues Ă  l’aide des modèles de cycles sinusoĂŻdaux ont affichĂ© une bonne correspondance par rapport aux estimations publiĂ©es de l’abondance des sous-populations pour l’ensemble des neuf sous-populations de cycle sinusoĂŻdal (r = 0,978; p < 0,001). Le manque de fermeture dĂ©mographique (migration entre les sous-populations) Ă©tait Ă©vident dans les deux sous-populations qui n’étaient pas considĂ©rĂ©es comme suivant un cycle sinusoĂŻdal. L’amplitude des sous-populations de caribous de la toundra Ă©tait principalement dĂ©terminĂ©e par la taille de l’aire de rĂ©partition totale et la productivitĂ© de l’aire d’estivage (R2 = 0,962; p < 0,001), et les pĂ©riodes de sous-populations Ă©taient principalement dĂ©terminĂ©es par l’amplitude, la productivitĂ© de l’aire de rĂ©partition totale et la tempĂ©rature en surface des terres (R2 = 0,950; p < 0,001). Les estimations des sĂ©ries chronologiques de l’abondance des sous-populations produites au moyen des modèles respectifs de rĂ©gression environnementale Ă©taient fortement corrĂ©lĂ©es (r = 0,964; p < 0,001) aux estimations publiĂ©es de l’abondance des sous-populations pour l’ensemble des neuf sous-populations de cycle sinusoĂŻdal. Les dĂ©clins prolongĂ©s (> 3 gĂ©nĂ©rations) de sous-populations sont une caractĂ©ristique naturelle des sous-populations cycliques de caribous de la toundra. Les tendances caractĂ©risant l’abondance des espèces en fonction d’assemblages regroupĂ©s de sous-populations cycliques asynchrones devraient ĂŞtre interprĂ©tĂ©es avec prudence

    Community clusters in wildlife and environmental management: using TEK and community involvement to improve co-management in an era of rapid environmental change

    Full text link
    Environmental change has stressed wildlife co-management systems in the Arctic because parameters are changing more rapidly than traditional scientific monitoring can accommodate. Co-management systems have also been criticized for not fully integrating harvesters into the local management of resources. These two problems can be approached through the use of spatiallydefined human social units termed community clusters, which are based on the demographic or ecological units being managed. An examination of polar bear management in Nunavut Territory, Canada, shows that community clusters provide a forum to collect and analyse traditional ecological knowledge (TEK) over a geographic area that mirrors the management unit, providing detailed information of local conditions. This case study also provides examples of how instituting community clusters at a governance level provides harvesters with social space in which to develop their roles as managers, along the continuum from being powerless spectators to active, adaptive co-managers. Five steps for enhancing co-management systems through the inclusion of community clusters and their knowledge are: (1) the acceptance of TEK, science, the precautionary principle and the right of harvesters not to be constrained by overly-conservative management decisions; (2) data collection involving TEK and science, and a collaboration between the two; (3) institutionalization of community clusters for data collection; (4) institutionalization of community clusters in the management process; and (5) grass-roots initiatives to take advantage of the social space provided by the community cluster approach, in order to adapt the management to local conditions, and to effect policy changes at higher levels, so as to better meet local objectives

    Developing Multi-Level Institutions from Top-Down Ancestors

    Full text link
    The academic literature contains numerous examples of the failures of both top-down and bottom-up common pool resource management frameworks. Many authors agree that management regimes instead need to utilize a multi-level governance approach to meet diverse objectives in management. However, many currently operating systems do not have that history. This paper explores the conversion of ancestral top-down regimes to complex systems involving multiple scales, levels and objectives through the management of the polar bear (Ursus maritimus) in its five range countries. The less successful polar bear management systems continue to struggle with the challenges of developing institutions with the capacity to learn and change, addressing multiple objectives while recognizing the conservation backbone to management, and matching the institutional scale with biophysical, economic and social scales. The comparatively successful institutions incorporate these features, but reveal on-going problems with vertical links that are partially dealt with through the creation of links to other groups

    Developing Multi-Level Institutions from Top-Down Ancestors

    Get PDF

    Hunting with Polar Bears: Problems with the Passive Properties of the Commons

    Full text link
    Inuit in Canada’s Arctic conceptualize both human hunters and their polar bear prey as active participants in the hunt and as part of a larger socio-economic system requiring the involvement of both humans and animals. Although often treated through the lens of common-pool resource theory, the Inuit viewpoint conflicts with Western wildlife management systems that typically treat animals, and nature in general, as passive. When polar bears are understood as active participants in the hunt, the rights associated with common property regimes and assumptions about collective-choice decisions in common-pool resource management require significant revision. In this paper we argue that common-pool resource theories which assume natural resources are inherently passive cannot adequately account for the system of active relationships operating among Inuit in Arctic Canada. The co-management system of Nunavut Territory, Canada, uses a flexible quota approach, which, while following conservation guidelines, allows some space for the traditional Inuit-polar bear system to operate. This example shows how common-pool resources may be managed sustainably without the attendant assumption that natural resources exist passively outside of common-pool resource regimes
    corecore