121 research outputs found
A Multilevel Meta-Analysis of Paired Oral Reading Methods in Elementary Classrooms
For decades, researchers and practitioners have supported developing readers via synchronous oral reader with a stronger peer or adult tutor. These methods–collectively known as Paired Oral Reading—are purported to promote reading achievement for tutee readers. However, despite nearly 60 years of investigation, no known research has adequately reviewed and synthesized the effects of similar practices commonly known as Paired Oral Reading. This dissertation systematically reviewed the published literature on the various methods of Paired Oral Reading with elementary-age students then meta-analyzed the quantitative studies that met pre-established inclusion criteria. The meta-analysis calculated the effect of Paired Oral Reading outcomes on tutee reading achievement and subsequently investigated differential outcomes for various factors such as tutor type, time variables, and reading outcome (fluency/comprehension). The results indicate that tutees receiving Paired Oral Reading support experience greater achievement with adult tutors over peer tutors and in reading comprehension versus oral reading fluency. The systematic review and meta-analysis of these data demonstrate that strategic use of these methods can support weak or developing elementary readers. Further, it is proposed that future research and application of these techniques are framed as a single family of methods; Synchronous Partnered Oral Reading Techniques (SPORT). Other implications for future research and classroom application of SPORT are discussed
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
We present a user-friendly, cloud-based facility for quantifying methane emissions with 0.25∘ × 0.3125∘
(≈ 25 km × 25 km) resolution by inverse analysis of satellite observations from the TROPOspheric Monitoring
Instrument (TROPOMI). The facility is built on an Integrated Methane Inversion optimal estimation workflow (IMI 1.0) and supported for use on the
Amazon Web Services (AWS) cloud. It exploits the GEOS-Chem chemical transport model and TROPOMI data already resident on AWS, thus avoiding
cumbersome big-data download. Users select a region and period of interest, and the IMI returns an analytical solution for the Bayesian optimal
estimate of period-average emissions on the 0.25∘ × 0.3125∘ grid including error statistics, information content, and
visualization code for inspection of results. The inversion uses an advanced research-grade algorithm fully documented in the literature. An
out-of-the-box inversion with rectilinear grid and default prior emission estimates can be conducted with no significant learning curve. Users can
also configure their inversions to infer emissions for irregular regions of interest, swap in their own prior emission inventories, and modify
inversion parameters. Inversion ensembles can be generated at minimal additional cost once the Jacobian matrix for the analytical inversion has been
constructed. A preview feature allows users to determine the TROPOMI information content for their region and time period of interest before
actually performing the inversion. The IMI is heavily documented and is intended to be accessible by researchers and stakeholders with no expertise
in inverse modelling or high-performance computing. We demonstrate the IMI's capabilities by applying it to estimate methane emissions from the US
oil-producing Permian Basin in May 2018.</p
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants [discussion paper]
We present an updated mechanism for tropospheric halogen (Clĝ€¯+ĝ€¯Brĝ€¯+ĝ€¯I) chemistry in the GEOS-Chem global atmospheric chemical transport model and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneous chemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model to include mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixing ratio is 0.19ĝ€¯ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison to surface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytime measurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very large missing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a global mean tropospheric mixing ratio of 0.08ĝ€¯ppt, and shows consistency with surface and aircraft observations. The modeled global mean tropospheric concentration of Cl atoms is 630ĝ€¯cm-3, contributing 0.8ĝ€¯% of the global oxidation of methane, 14ĝ€¯% of ethane, 8ĝ€¯% of propane, and 7ĝ€¯% of higher alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11ĝ€¯%, NOx by 6ĝ€¯%, and OH by 4ĝ€¯%. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozone simulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants
We present an updated mechanism for tropospheric halogen (Clĝ€¯+ĝ€¯Brĝ€¯+ĝ€¯I) chemistry in the GEOS-Chem global atmospheric chemical transport model and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneous chemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model to include mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixing ratio is 0.19ĝ€¯ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison to surface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytime measurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very large missing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a global mean tropospheric mixing ratio of 0.08ĝ€¯ppt, and shows consistency with surface and aircraft observations. The modeled global mean tropospheric concentration of Cl atoms is 630ĝ€¯cm-3, contributing 0.8ĝ€¯% of the global oxidation of methane, 14ĝ€¯% of ethane, 8ĝ€¯% of propane, and 7ĝ€¯% of higher alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11ĝ€¯%, NOx by 6ĝ€¯%, and OH by 4ĝ€¯%. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozone simulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere
Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih
Seven mycobacteriophages from distinct geographical locations were isolated, using Mycobacterium smegmatis mc2155 as the host, and then purified and sequenced. All of the genomes are related to cluster A mycobacteriophages, BobSwaget and Lokk in subcluster A2; Fred313, KADY, Stagni, and StepMih in subcluster A3; and MyraDee in subcluster A18, the first phage to be assigned to that subcluster
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater
The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian
bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray
diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite,
and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite.
The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight
percent x-ray amorphous material, likely containing multiple Fe^(3+)- and volatile-bearing phases,
including possibly a substance resembling hisingerite. The crystalline component is similar to
the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian
basaltic meteorites. The amorphous component is similar to that found on Earth in places
such as soils on the Mauna Kea volcano, Hawaii
- …