305 research outputs found
A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma
The phosphatidylinositol 3-kinase signal transduction pathway members are often activated in tumor samples from patients with non-Hodgkin's lymphoma (NHL). Everolimus is an oral agent that targets the raptor mammalian target of rapamycin (mTORC1). The goal of this trial was to learn the antitumor activity and toxicity of single-agent everolimus in patients with relapsed/refractory aggressive NHL. Patients received everolimus 10 mg PO daily. Response was assessed after two and six cycles, and then every three cycles until progression. A total of 77 patients with a median age of 70 years were enrolled. Patients had received a median of three previous therapies and 32% had undergone previous transplant. The overall response rate (ORR) was 30% (95% confidence interval: 20–41%), with 20 patients achieving a partial remission and 3 a complete remission unconfirmed. The ORR in diffuse large B cell was 30% (14/47), 32% (6/19) in mantle cell and 38% (3/8) in follicular grade 3. The median duration of response was 5.7 months. Grade 3 or 4 anemia, neutropenia and thrombocytopenia occurred in 14, 18 and 38% of patients, respectively. Everolimus has single-agent activity in relapsed/refractory aggressive NHL and provides proof-of-concept that targeting the mTOR pathway is clinically relevant
Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy
Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis
CATH: expanding the horizons of structure-based functional annotations for genome sequences
This article provides an update of the latest data and developments within the CATH protein structure classification database (http://www.cathdb.info). The resource provides two levels of release: CATH-B, a daily snapshot of the latest structural domain boundaries and superfamily assignments, and CATH+, which adds layers of derived data, such as predicted sequence domains, functional annotations and functional clustering (known as Functional Families or FunFams). The most recent CATH+ release (version 4.2) provides a huge update in the coverage of structural data. This release increases the number of fully- classified domains by over 40% (from 308 999 to 434 857 structural domains), corresponding to an almost two- fold increase in sequence data (from 53 million to over 95 million predicted domains) organised into 6119 superfamilies. The coverage of high-resolution, protein PDB chains that contain at least one assigned CATH domain is now 90.2% (increased from 82.3% in the previous release). A number of highly requested features have also been implemented in our web pages: allowing the user to view an alignment between their query sequence and a representative FunFam structure and providing tools that make it easier to view the full structural context (multi-domain architecture) of domains and chains
Phylogeographical Analysis on Squalidus argentatus Recapitulates Historical Landscapes and Drainage Evolution on the Island of Taiwan and Mainland China
Phylogeographical analyses on Squalidus argentatus samples from thirteen localities within mainland China and Taiwan were conducted for biogeographic studies, as their dispersal strictly depends on geological evolution of the landmasses. A total of 95 haplotypes were genotyped for mtDNA cyt b gene in 160 specimens from nine river systems. Relatively high levels of haplotype diversity (h = 0.984) and low levels of nucleotide diversity (π = 0.020) were detected in S. argentatus. Two major phylogenetic haplotype groups, A and B, were revealed via phylogenetic analysis. The degree of intergroup divergence (3.96%) indicates that these groups diverged about 4.55 myr (million years) ago. Haplotype network and population analyses indicated significant genetic structure (FST = 0.775), largely concordant with the geographical location of the populations. According to SAMOVA analysis, we divided these populations into four units: Yangtze-Pearl, Qiantang-Minjiang, Jiulong-Beijiang and Taiwan groups. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots indicated a significant population expansion for lineage A and B, approximately dated 0.35 and 0.04 myr ago, respectively. We found strong geographical organization of the haplotype clades across different geographic scales that can be explained by episodes of dispersal and population expansion followed by population fragmentation and restricted gene flow
Methamphetamine and Viagra Use: Relationship to Sexual Risk Behaviors
Recent studies show that Viagra and methamphetamine use are associated with unprotected anal intercourse among men who have sex with men (MSM). In Long Beach, California, we have reported on an association between Viagra use and the use of amphetamines during sex. The current research investigated the use of both Viagra and amphetamine in men in Long Beach, California. Data on 1,839 men recruited into HIV prevention and testing programs were collected using the Risk Behavior Assessment. A generalized logit model was constructed comparing ever having used both amphetamine and Viagra together and separately, as compared to never having used either (referent). Men who used both methamphetamine and Viagra showed a significantly higher prevalence of hepatitis B, syphilis, and HIV compared to those who used only one or neither drug. Of the 1,794 complete cases, 11.1% (199/1794) had used both amphetamine and Viagra. Of 20 potential risk and protective factors for use of amphetamine and Viagra, 12 were significant predictors: ever used gamma-hydroxybutyrate (GHB), ever used cocaine, ever used ecstasy, being infected with HIV, race = White compared to other, ever having hepatitis B, ever using crack, ever given money to have sex, living in a hotel, ever been in drug treatment, and ever using heroin. The protective factor was being heterosexual. Viagra use was associated with insertive, and methamphetamine was associated with receptive, anal intercourse. GHB use appears to play a more important role than previously thought
Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin potentially inhibited the growth of B- and T-lymphoma cells. Strong antitumor effect was also observed on primary lymphoma cells while sparing normal hematopoiesis ex vivo. Metformin-induced AMPK activation was associated with the inhibition of the mTOR signaling without involving AKT. Moreover, lymphoma cell response to the chemotherapeutic agent doxorubicin and mTOR inhibitor temsirolimus was significantly enhanced when co-treated with metformin. Pharmacologic and molecular knock-down of AMPK attenuated metformin-mediated lymphoma cell growth inhibition and drug sensitization. In vivo, metformin induced AMPK activation, mTOR inhibition and remarkably blocked tumor growth in murine lymphoma xenografts. Of note, metformin was equally effective when given orally. Combined treatment of oral metformin with doxorubicin or temsirolimus triggered lymphoma cell autophagy and functioned more efficiently than either agent alone. Taken together, these data provided first evidence for the growth-inhibitory and drug-sensitizing effect of metformin on lymphoma. Selectively targeting mTOR pathway through AMPK activation may thus represent a promising new strategy to improve treatment of lymphoma patients
Delayed Differentiation Makes Many Models Compatible with Data for CD8+ T Cell Differentiation
Upon antigen stimulation, naïve CD8+ T cells differentiate into short-lived effectors and longer-lived memory T cells. The kinetics of expansion of antigen-specific CD8+ T cells is highly reproducible at the population level, but the fate of individual naïve cells is stochastic, as individual naïve CD8+ T cells produce different numbers of effector and memory cells. Using mathematical models to analyse experimental data on tracing the fate of individual naïve T cells, it was previously shown that a linear model where naïve CD8+ T cells first differentiate into memory precursors that subsequently differentiate into effector cells describes the data best. However, this ‘memory first’ linear model assumed that the proliferation and differentiation events were distributed exponentially, whereas several studies indicate that differentiation of CD8+ T cell subsets need not follow an exponential distribution. Here we investigate the effect of delayed differentiation by adding intermediate compartments and use similar ordinary differential equations and Gillespie simulations to evaluate alternate models of CD8+ T cell differentiation. Models where a substantial fraction of the naïve CD8+ T cells directly differentiate into effector cells, without going through a memory phase, exhibit population dynamics that are very similar to the original ‘memory first’ linear model. Because alternate models with delayed differentiation perform better than those without a delay, we conclude that non-exponential forms of cellular differentiation need to be considered when comparing models. Hence the exact pathway for the differentiation of naïve CD8+ T cells into effector and memory T cells remains an open question
Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species in the Falkland Islands
Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare. The Hubbs principle, or “desperation hypothesis,” states that under such circumstances the rarer species is more likely to mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails (Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population “isolation with migration” coalescent analysis. While additional data are needed to determine if this event in the Falkland Islands was a rare singular occurrence, our results provide further support for the “desperation hypothesis,” which states that scarcity in one population and abundance of another will often lead to hybridization
Communicating Phylogeny: Evolutionary Tree Diagrams in Museums
Tree of life diagrams are graphic representations of phylogeny—the evolutionary history and
relationships of lineages—and as such these graphics have the potential to convey key evolutionary
ideas and principles to a variety of audiences. Museums play a significant role in teaching about
evolution to the public, and tree graphics form a common element in many exhibits even though
little is known about their impact on visitor understanding. How phylogenies are depicted and used
in informal science settings impacts their accessibility and effectiveness in communicating about
evolution to visitors. In this paper, we summarize the analysis of 185 tree of life graphics collected
from museum exhibits at 52 institutions and highlight some potential implications of how trees are
presented that may support or hinder visitors’ understanding about evolution. While further work is
needed, existing learning research suggests that common elements among the diversity of museum
trees such as the inclusion of anagenesis and absence of time and shared characters might
represent potential barriers to visitor understanding
- …