3,623 research outputs found

    Studies of the black swamp snake, Seminatrix pygaea (Cope), with descriptions of two new subspecies

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56321/1/MP076.pd

    Hybrid Quantum System of a Nanofiber Mode Coupled to Two Chains of Optically Trapped Atoms

    Full text link
    A tapered optical nanofiber simultaneously used to trap and optically interface of cold atoms through evanescent fields constitutes a new and well controllable hybrid quantum system. The atoms are trapped in two parallel 1D optical lattices generated by suitable far blue and red detuned evanescent field modes very close to opposite sides of the nanofiber surface. Collective electronic excitations (excitons) of each of the optical lattices are resonantly coupled to the second lattice forming symmetric and antisymmetric common excitons. In contrast to the inverse cube dependence of the individual atomic dipole-dipole interaction, we analytically find an exponentially decaying coupling strength with distance between the lattices. The resulting symmetric (bright) excitons strongly interact with the resonant nanofiber photons to form fiber polaritons, which can be observed through linear optical spectra. For large enough wave vectors the polariton decay rate to free space is strongly reduced, which should render this system ideal for the realization of long range quantum communication between atomic ensembles.Comment: 9 pages, 9 figure

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Entangled Light in Moving Frames

    Full text link
    We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity, and the spread of the beam.Comment: 4 pages and 3 figures. Minor corrections, footnote on optimal basis state

    Quantum Clock Synchronization Based on Shared Prior Entanglement

    Get PDF
    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, and classical communications, to establish a synchronized pair of atomic clocks. In contrast to classical synchronization schemes, the accuracy of our protocol is independent of Alice or Bob's knowledge of their relative locations or of the properties of the intervening medium.Comment: 4 page

    Simulations of atomic trajectories near a dielectric surface

    Get PDF
    We present a semiclassical model of an atom moving in the evanescent field of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong, coherent coupling with the cavity at distances of approximately 100 nanometers from the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic motion and detection. Atomic transit events detected in recent experiments are analyzed with our simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure

    Quantum States of Light Produced by a High-Gain Optical Parametric Amplifier for Use in Quantum Lithography

    Get PDF
    We present a theoretical analysis of the properties of an unseeded optical parametic amplifier (OPA) used as the source of entangled photons for applications in quantum lithography. We first study the dependence of the excitation rate of a two-photon absorber on the intensity of the light leaving the OPA. We find that the rate depends linearly on intensity only for output beams so weak that they contain fewer than one photon per mode. We also study the use of an N-photon absorber for arbitrary N as the recording medium to be used with such a light source. We find that the contrast of the interference pattern and the sharpness of the fringe maxima tend to increase with increasing values of N, but that the density of fringes and thus the limiting resolution does not increase with N. We conclude that the output of an unseeded OPA exciting an N-photon absorber provides an attractive system in which to perform quantum lithography

    Photon polarisation entanglement from distant dipole sources

    Full text link
    It is commonly believed that photon polarisation entanglement can only be obtained via pair creation within the same source or via postselective measurements on photons that overlapped within their coherence time inside a linear optics setup. In contrast to this, we show here that polarisation entanglement can also be produced by distant single photon sources in free space and without the photons ever having to meet, if the detection of a photon does not reveal its origin -- the which way information. In the case of two sources, the entanglement arises under the condition of two emissions in certain spatial directions and leaves the dipoles in a maximally entangled state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J. Phys.
    • …
    corecore