468 research outputs found

    There Can Be No Compromise: The Necessity of Ratcheted Authentication in Secure Messaging

    Get PDF
    Modern messaging applications often rely on out-of-band communication to achieve entity authentication, with human users actively verifying and attesting to long-term public keys. This user-mediated authentication is done primarily to reduce reliance on trusted third parties by replacing that role with the user. Despite a great deal of research focusing on analyzing the confidentiality aspect of secure messaging, the authenticity aspect of it has been largely assumed away. Consequently, while many existing protocols provide some confidentiality guarantees after a compromise, such as post-compromise security (PCS), authenticity guarantees are generally lost. This leads directly to potential man-in-the-middle (MitM) attacks within the intended threat model. In this work, we address this gap by proposing a model to formally capture user-mediated entity authentication in ratcheted secure messaging protocols that can be composed with any ratcheted key exchange. Our threat model captures post-compromise entity authentication security. We demonstrate that the Signal application\u27s user-mediated authentication protocol cannot be proven secure in this model and suggest a straightforward fix for Signal that allows the detection of an active adversary. Our results have direct implications for other existing and future ratcheted secure messaging applications

    Quantum-Secure Hybrid Communication for Aviation Infrastructure

    Get PDF
    The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In this work we propose a pair of quantum-secure hybrid key exchange protocols (PQAG-KEM and PQAG-SIG) to secure communication between aircrafts in-flight and ground stations. PQAG-KEM leverages post-quantum and classical Key Encapsulation Mechanisms (KEMs) to ensure the hybrid security of the protocol against classical as well as future quantum adversaries. PQAG-SIG, alternatively, uses quantum-safe digital signatures to achieve authentication security. We provide an implementation of both PQAG-KEM and PQAG-SIG, and compare favourably with current state-of- the-art secure avionic protocols. Finally, we provide a formal analysis of our new PQAG protocols in a strong hybrid key exchange framework

    Authenticated Continuous Key Agreement: Active MitM Detection and Prevention

    Get PDF
    Current messaging protocols are incapable of detecting active man-in-the-middle threats. Even common continuous key agreement protocols such as Signal, which offers forward secrecy and post-compromise security, are dependent on the adversary being passive immediately following state compromise, and healing guarantees are lost if the attacker is not. This work offers the first solution for detecting active man-in-the-middle attacks on such protocols by extending authentication beyond the initial public keys and binding it to the entire continuous key agreement. In this, any adversarial fork is identifiable to the protocol participants. We provide a modular construction generic for application with any continuous key agreement protocol, a specific construction for application to Signal, and security analysis. The modularity of our solution enables it to be seamlessly adopted by any continuous key agreement protocol

    UniHand: Privacy-preserving Universal Handover for Small-Cell Networks in 5G-enabled Mobile Communication with KCI Resilience

    Get PDF
    Introducing Small Cell Networks (SCN) has significantly improved wireless link quality, spectrum efficiency and network capacity, which has been viewed as one of the key technologies in the fifth-generation (5G) mobile network. However, this technology increases the frequency of handover (HO) procedures caused by the dense deployment of cells in the network with reduced cell coverage, bringing new security and privacy issues. The current 5G-AKA and HO protocols are vulnerable to security weaknesses, such as the lack of forward secrecy and identity confusion attacks. The high HO frequency of HOs might magnify these security and privacy concerns in the 5G mobile network. This work addresses these issues by proposing a secure privacy-preserving universal HO scheme UniHand for SCNs in 5G mobile communication. UniHand can achieve mutual authentication, strong anonymity, perfect forward secrecy, key-escrow-free and key compromise impersonation (KCI) resilience. To the best of our knowledge, this is the first scheme to achieve secure, privacy-preserving universal HO with KCI resilience for roaming users in 5G environment. We demonstrate that our proposed scheme is resilient against all the essential security threats by performing a comprehensive formal security analysis and conducting relevant experiments to show the cost-effectiveness of the proposed scheme

    Privacy-aware Secure Region-based Handover for Small Cell Networks in 5G-enabled Mobile Communication

    Get PDF
    The 5G mobile communication network provides seamless communications between users and service providers and promises to achieve several stringent requirements, such as seamless mobility and massive connectivity. Although 5G can offer numerous benefits, security and privacy issues still need to be addressed. For example, the inclusion of small cell networks (SCN) into 5G brings the network closer to the connected users, providing a better quality of services (QoS), resulting in a significant increase in the number of Handover procedures (HO), which will affect the security, latency and efficiency of the network. It is then crucial to design a scheme that supports seamless handovers through secure authentication to avoid the consequences of SCN. To address this issue, this article proposes a secure region-based handover scheme with user anonymity and an efficient revocation mechanism that supports seamless connectivity for SCNs in 5G. In this context, we introduce three privacy-preserving authentication protocols, i.e., initial authentication protocol, intra-region handover protocol and inter-region handover protocol, for dealing with three communication scenarios. To the best of our knowledge, this is the first paper to consider the privacy and security in both the intra-region and inter-region handover scenarios in 5G communication. Detailed security and performance analysis of our proposed scheme is presented to show that it is resilient against many security threats, is cost-effective in computation and provides an efficient solution for the 5G enabled mobile communication

    Highly Efficient Privacy-Preserving Key Agreement for Wireless Body Area Networks

    Get PDF

    Authenticated Network Time Synchronization

    Get PDF
    The Network Time Protocol (NTP) is used by many network-connected devices to synchronize device time with remote servers. Many security features depend on the device knowing the current time, for example in deciding whether a certificate is still valid. Currently, most services implement NTP without authentication, and the authentication mechanisms available in the standard have not been formally analyzed, require a pre-shared key, or are known to have cryptographic weaknesses. In this paper we present an authenticated version of NTP, called ANTP, to protect against desynchronization attacks. To make ANTP suitable for large-scale deployments, it is designed to minimize server-side public-key operations by infrequently performing a key exchange using public key cryptography, then relying solely on symmetric cryptography for subsequent time synchronization requests; moreover, it does so without requiring server-side per-connection state. Additionally, ANTP ensures that authentication does not degrade accuracy of time synchronization. We measured the performance of ANTP by implementing it in OpenNTPD using OpenSSL. Compared to plain NTP, ANTP’s symmetric crypto reduces the server throughput (connections/second) for time synchronization requests by a factor of only 1.6. We analyzed the security of ANTP using a novel provable security framework that involves adversary control of time, and show that ANTP achieves secure time synchronization under standard cryptographic assumptions; our framework may also be used to analyze other candidates for securing NTP

    Identity Confidentiality in 5G Mobile Telephony Systems

    Get PDF
    The 3rd Generation Partnership Project (3GPP) recently proposed a standard for 5G telecommunications, containing an identity protection scheme meant to address the long-outstanding privacy problem of permanent subscriber-identity disclosure. The proposal is essentially two disjoint phases: an identification phase, followed by an establishment of security context between mobile subscribers and their service providers via symmetric-key based authenticated key agreement. Currently, 3GPP proposes to protect the identification phase with a public-key based solution, and while the current proposal is secure against a classical adversary, the same would not be true of a quantum adversary. 5G specifications target very long-term deployment scenarios (well beyond the year 2030), therefore it is imperative that quantum-secure alternatives be part of the current specification. In this paper, we present such an alternative scheme for the problem of private identification protection. Our solution is compatible with the current 5G specifications, depending mostly on cryptographic primitives already specified in 5G, adding minimal performance overhead and requiring minor changes in existing message structures. Finally, we provide a detailed formal security analysis of our solution in a novel security framework

    Pragmatic Authenticated Key Agreement for IEEE Std 802.15.6

    Get PDF
    The IEEE Std 802.15.6 is the latest international standard for Wireless Body Area Networks (WBANs). The security of communication in this standard is based upon four elliptic-curve based key agreement protocols. These protocols have been shown to exhibit serious security vulnerabilities but surprisingly, do not provision any privacy guarantees. To date, no suitable key agreement protocol has been proposed which fulfils all the requisite objectives for IEEE Std 802.15.6. In this paper two key agreement protocols are presented which, in addition to being efficient and provisioning advance security properties, also offer the essential privacy attributes of anonymity and unlinkability. The protocols are also quantum-safe as they are independent of any public-key based operations. We develop a formal security and privacy model in an appropriate complexity-theoretic framework and prove the proposed protocols secure in this model

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field
    • …
    corecore