6 research outputs found

    Reduction of cholesterol and markers of oxidation in serum of hypercholestrolemic patients treated with lycosome formulation of simvastatin

    Get PDF
    Background: Use of microencapsulated HMG-CoA reductase inhibitors (statins) might be extremely helpful in the prevention of their side effects.Methods: 24 volunteers with hypercholesterolemia were given once daily 20 mg of lycosome-formulated Simvastatin fused with 7 mg lycopene (Lyco-Simvastatin) or the same amount of unmodified Simvastatin with no lycopene. Control patients received 7 mg of lycopene alone. Plasma lipids and oxidative markers were measured after 4 weeks of treatment.Results: Both formulations of Simvastatin, but not lycopene, caused a reduction in serum total cholesterol and LDL at the intermediate (end of 2nd week) and final (end of 4th week) points of interventional period. Notably, reduction of total cholesterol and LDL in the 4th week of the trial was more profound in patients treated with Lyco-Simvastatin versus unmodified Simvastatin (P<0.05). Patients treated with Lyco-Simvastatin showed a reduction in serum Apo B level, which was not observed in other groups. Lycopene treatment caused a modest but statistically significant decrease in serum triglyceride. However, the triglyceride-lowering effect of Simvastatin was more profound in the case of Lyco-Simvastatin treatment. Lycopene as well as unmodified Simvastatin gave a marginal reduction of Inflammatory Oxidative Damage. Remarkably, the combined formulation of Simvastatin and lycopene gave a significant reduction in the values for oxidative damage (reduction of median by 112.5 ÂľM, P<0.05). Similar synergistic effect was observed when levels of oxidized LDL were analyzed.Conclusions: Lycosome-formulated microencapsulated Simvastatin has a better cholesterol-lowering and antioxidant capacity presumably due to enhanced bioavailability of the drug and synergism with lycopene

    The cientificWorldJOURNAL Clinical Study Whey Protein Lycosome Formulation Improves Vascular Functions and Plasma Lipids with Reduction of Markers of Inflammation and Oxidative Stress in Prehypertension

    Get PDF
    Parameters reflecting cardiovascular health and inflammation were studied in a pilot clinical trial conducted on 40 patients with prehypertension. The patients were treated with a new proprietary formulation of a whey protein (WP) isolate embedded into lycopene micelles (WPL) during a 1-month period. Control groups received lycopene or WP as a singular formulation or placebo pills for the same period of time. Combined WPL formulation of whey protein and lycopene has caused multiple favorable changes in the cardiovascular function (including a tendency to the reduced systemic blood pressure), the plasma lipid profile, and the inflammatory status of patients with prehypertension, whereas singular formulations of the compounds and placebo did not have such an effect. The reduction of plasma triglycerides and cholesterol fractions and almost two-fold decline in C-reactive protein (CRP) and inflammatory oxidative damage (IOD) levels as well as an increase in nitric oxide (NO), tissue oxygenation (StO 2 ), and flow-mediated dilation values constitute the most significant benefit/outcome of the treatment with the combined formulation of whey protein and lycopene. The treatment did not affect the values of ankle-brachial index (ABI), body weight, and body mass index (BMI)

    Reduction of elevated lipids and low‐density lipoprotein oxidation in serum of individuals with subclinical hypoxia and oxidative stress supplemented with lycosome formulation of docosahexaenoic acid

    No full text
    Thirty two individuals aged 40–65 years old with a moderate hyperlipidemia (serum triglycerides > 150 mg/dl and LDL from 130 to 160 mg/dl) were supplemented once daily for 30 days with a 250 mg conventional formulation of docosahexaenoic acid (DHA) without lycopene (CF‐DHA) or 250 mg of lycosome‐formulated DHA containing 7 mg of lycopene (LF‐DHA). It was shown that ingestion of CF‐DHA led to a transient increase in serum DHA level after 2 weeks of the trial, whereas LF‐DHA did not cause significant changes in serum DHA. However, there was a noticeable increase in serum eicosapentaenoic acid levels exceeding the pretreatment value by 42.8% and 39.1% after the 2nd and 4th weeks of LF‐DHA ingestion. Patients supplemented with LF‐DHA showed a significant (19.5 mg/dl, p < 0.05) decline in LDL, which was accompanied by a corresponding decrease in total serum cholesterol and a much stronger reduction in serum triglyceride levels (reduction of medians by 27.5 mg/dl). No changes in HDL were observed. LF‐DHA caused a significant decline in the serum level of malonic dialdehyde (MDA), whereas the components of LF‐DHA, lycopene and DHA, ingested as two separate formulations had a less significant effect on serum MDA. Moreover, LF‐DHA increased both the plasma oxygen transport and tissue oxygen saturation by the end of the observational period, while lycopene or DHA taken alone, or both of them co‐ingested separately had none or a much less effect on the oxygen turnover parameters

    Whey Protein Lycosome Formulation Improves Vascular Functions and Plasma Lipids with Reduction of Markers of Inflammation and Oxidative Stress in Prehypertension

    Get PDF
    Parameters reflecting cardiovascular health and inflammation were studied in a pilot clinical trial conducted on 40 patients with prehypertension. The patients were treated with a new proprietary formulation of a whey protein (WP) isolate embedded into lycopene micelles (WPL) during a 1-month period. Control groups received lycopene or WP as a singular formulation or placebo pills for the same period of time. Combined WPL formulation of whey protein and lycopene has caused multiple favorable changes in the cardiovascular function (including a tendency to the reduced systemic blood pressure), the plasma lipid profile, and the inflammatory status of patients with prehypertension, whereas singular formulations of the compounds and placebo did not have such an effect. The reduction of plasma triglycerides and cholesterol fractions and almost two-fold decline in C-reactive protein (CRP) and inflammatory oxidative damage (IOD) levels as well as an increase in nitric oxide (NO), tissue oxygenation (StO2), and flow-mediated dilation values constitute the most significant benefit/outcome of the treatment with the combined formulation of whey protein and lycopene. The treatment did not affect the values of ankle-brachial index (ABI), body weight, and body mass index (BMI)

    Reduction of Liver Span and Parameters of Inflammation in Nonalcoholic Fatty Liver Disease Patients Treated with Lycosome Formulation of Phosphatidylcholine: A Preliminary Report

    No full text
    Twenty-nine newly diagnosed individuals with Nonalcoholic Fatty Liver Disease (NAFLD) remaining on habitual dietary regimen were supplemented with regular or lycosome formulations of phosphatidylcholine (PC) during a pilot, randomized, double-blinded clinical study. After two months of oral PC intake (450 mg daily) the liver size as well as serum levels of hepatic enzymes and markers of inflammation were evaluated by ultrasonography and biochemical analysis. It was shown that there was a statistically significant reduction of medians for the Mid-Clavicular liver size from 16.0 cm (95/5% CI: 17.1/15.5) to 15.1 cm (95/5% CI: 17.2/14.4, P=0.021) in participants ingesting the lycosome-formulated PC (L-PC) whereas regular formulation of PC (R-PC) had only a marginal effect on this parameter (P=0.044). A similar tendency was observed in the Mid-Sternal liver size. Moreover, there was a reduction of medians for ALT values at the end point of the study (P=0.026) after ingestion of L-PC, while R-PC had no statistically significant effect. On the other hand, ingestion of both formulations was accompanied by reductions in values for Inflammatory Oxidative Damage (IOD) and oxidized LDL in serum. However, L-PC had superior activity in these terms, presumably due to the presence of lycopene, a powerful antioxidant, in the L-PC-Lycosome structure. C-reactive protein level was moderately decreased (reduction of medians from 6.5 [95/5% CI: 7.7/5.8] mg/L to 5.1 [95/5% CI: 5.6/4.3] mg/L) only after ingestion of L-PC. The greater efficacy of L-PC seen in NAFLD volunteers may reflect improved bioavailability of PC owing to better protection of the microencapsulated PC from gastrointestinal enzymes and possibly enhanced hepatic delivery of L-PC particles

    Effect of lycopene supplementation on cardiovascular parameters and markers of inflammation and oxidation in patients with coronary vascular disease

    No full text
    Oxidative stress and antioxidant deficiency play a pivotal role in initiation, development, and outcomes of cardiovascular disease. Pharmacokinetic parameters as well as the impact of highly bioavailable lycopene on cardiovascular variables, markers of inflammation and oxidation were investigated during a 30‐day clinical trial in patients with coronary vascular disease. The patients were randomized into two major groups and were supplemented with a single 7 mg daily dose of lycopene ingested either in the form of lactolycopene (68 patients) or in the form of lycosome‐formulated GA lycopene (74 patients). The endpoints included cardiovascular function parameters, serum lipids, and four markers of oxidative stress and inflammation. Ingestion of lycosome‐formulated lycopene increased serum lycopene levels by 2.9‐ and 4.3‐fold, respectively, after 2 and 4 weeks of the trial, whereas supplementation with lactolycopene upregulated serum lycopene by half‐fold only after 4 weeks of ingestion. Lycosome formulation of lycopene resulted by the end of the trial in a threefold reduction in Chlamydia pneumoniae IgG and reduction to the same degree of the inflammatory oxidative damage marker. The decrease in oxidized LDL caused by lycosome‐formulated lycopene was fivefold. Moreover, supplementation with lycosome‐formulated lycopene was accompanied by a significant increase in tissue oxygenation and flow‐mediated dilation by the end of the observational period. In contrast, lactolycopene did not cause any significant changes in the parameters studied. Therefore, enhanced bioavailability of lycopene promotes its antioxidant and anti‐inflammatory functions and endorses a positive effect of lycopene on cardiovascular system
    corecore