1,200 research outputs found
Neutron--Antineutron Oscillations at the Surface of Nuclei
We discuss some aspects of possible neutron--antineutron oscillations in
nuclei. The phenomenon occurs mostly at the surface of nuclei, and hence {\sl
i)} is not very sensitive to medium corrections and {\sl ii)} makes use of the
antinucleon-nucleus interaction in a region probed by experiments at CERN.Comment: Contr. Oak Ridge Workshop on Workshop on Baryon Instability, Latex, 4
pages, comments to [email protected]
The influence of strength of hyperon-hyperon interactions on neutron star properties
An equation of state of neutron star matter with strange baryons has been
obtained. The effects of the strength of hyperon-hyperon interactions on the
equations of state constructed for the chosen parameter sets have been
analyzed. Numerous neutron star models show that the appearance of hyperons is
connected with the increasing density in neutron star interiors. The performed
calculations have indicated that the change of the hyperon-hyperon coupling
constants affects the chemical composition of a neutron star. The obtained
numerical hyperon star models exclude large population of strange baryons in
the star interior.Comment: 18 pages, 22 figures, accepted to be published in Journal of Physics
G: Nuclear and Particle Physic
Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS
Production probabilities for strange clusters and strange matter in Au+Au
collisions at AGS energy are obtained in the thermal fireball model. The only
parameters of the model, the baryon chemical potential and temperature, were
determined from a description of the rather complete set of hadron yields from
Si+nucleus collisions at the AGS. For the production of light nuclear fragments
and strange clusters the results are similar to recent coalescence model
calculations. Strange matter production with baryon number larger than 10 is
predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures
Model-independent constraints on spin observables
We discuss model-independent constraints on spin observables in exclusive and
inclusive reactions, with special attention to the case of photoproduction.Comment: 6 pages, 5 figures, Talk by J.-M. Richard at NSTAR 2009, IHEP,
Beijing (China), April 19-22, 2009, Proc. to appear in "Chinese Physics C
Sigma Exchange in the Nonmesonic Decays of Light Hypernuclei and Violation of the Delta I=1/2 Rule
Nonmesonic weak decays of s-shell hypernuclei are analyzed in microscopic
models for the Lambda N to NN weak interaction. A scalar-isoscalar meson,
sigma, is introduced and its importance in accounting the decay rates, n/p
ratios and proton asymmetry is demonstrated. Possible violation of the Delta
I=1/2 rule in the nonmesonic weak decay of Lambda is discussed in a
phenomenological analysis and several useful constraints are presented. The
microscopic calculation shows that the current experimental data indicate a
large violation of the Delta I=1/2 rule, although no definite conclusion can be
derived due to large ambiguity of the decay rate of {^4_Lambda H}.Comment: 13 pages, 5 figure
Neutron Star Constraints on the H Dibaryon
We study the influence of a possible H dibaryon condensate on the equation of
state and the overall properties of neutron stars whose population otherwise
contains nucleons and hyperons. In particular, we are interested in the
question of whether neutron stars and their masses can be used to say anything
about the existence and properties of the H dibaryon. We find that the equation
of state is softened by the appearance of a dibaryon condensate and can result
in a mass plateau for neutron stars. If the limiting neutron star mass is about
that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2
GeV and a moderately attractive potential in the medium could not be ruled out.
On the other hand, if the medium potential were even moderately repulsive, the
H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar
mass were known to exist, attractive medium effects for the H could be ruled
out. Certain ranges of dibaryon mass and potential can be excluded by the mass
of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon
mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures,
latex (submitted to Phys. Rev. C
Loosely bound hyperons in the SU(3) Skyrme model
Hyperon pairs bound in deuteron like states are obtained within the SU(3)
Skyrme model in agreement with general expectations from boson exchange models.
The central binding from the flavor symmetry breaking terms increases with the
strangeness contents of the interacting baryons whereas the kinetic non-linear
-model term fixes the spin and isospin of the bound pair. We give a
complete account of the interactions of octet baryons within the product
approximation to baryon number configurations.Comment: 35 pages REVTEX including 2 figs, with 3 further figs available on
request from [email protected] or from [email protected]
SI-94-TP3S2; STPHY-Th/94-
Microscopic approach to pion-nucleus dynamics
Elastic scattering of pions from finite nuclei is investigated utilizing a
contemporary, momentum--space first--order optical potential combined with
microscopic estimates of second--order corrections. The calculation of the
first--order potential includes:\ \ (1)~full Fermi--averaging integration
including both the delta propagation and the intrinsic nonlocalities in the
- amplitude, (2)~fully covariant kinematics, (3)~use of invariant
amplitudes which do not contain kinematic singularities, and (4)~a
finite--range off--shell pion--nucleon model which contains the nucleon pole
term. The effect of the delta--nucleus interaction is included via the mean
spectral--energy approximation. It is demonstrated that this produces a
convergent perturbation theory in which the Pauli corrections (here treated as
a second--order term) cancel remarkably against the pion true absorption terms.
Parameter--free results, including the delta--nucleus shell--model potential,
Pauli corrections, pion true absorption, and short--range correlations are
presented. (2 figures available from authors)Comment: 13 page
Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance
The processes involving low energy and interactions (where
or ) are studied in the framework of heavy baryon chiral
perturbation theory with the (1405) resonance appearing as an
independent field.
The leading and next-to-leading terms in the chiral expansion are taken into
account. We show that an approach which explicitly includes the (1405)
resonance as an elementary quantum field gives reasonable descriptions of both
the threshold branching ratios and the energy dependence of total cross
sections.Comment: 16 pages, 6 figure
Coherent Pion Radiation From Nucleon Antinucleon Annihilation
A unified picture of nucleon antinucleon annihilation into pions emerges from
a classical description of the pion wave produced in annihilation and the
subsequent quantization of that wave as a coherent state. When the constraints
of energy-momentum and iso-spin conservation are imposed on the coherent state,
the pion number distribution and charge ratios are found to be in excellent
agreement with experiment.Comment: LaTex, 8 text pages, 1 PostScript figure, PSI-PR-93-2
- …
