3,355 research outputs found

    Ultra-High Energy Cosmic Rays

    Full text link
    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.Comment: 22 pages, contribution to the 2013 CERN - Latin-American School of High-Energy Physics, Arequipa, Peru, 6-19 Mar 201

    Determination of the Higgs boson spin with a linear e+e- collider

    Get PDF
    The energy dependence of the production cross section of a light Higgs boson is studied at threshold and compared to the expectations of several spin assumptions. Cross section measurements at three centre-of-mass energies with an integrated luminosity of 20 fb-1 allow the confirmation of the scalar nature of the Higgs Boson.Comment: 4 pages (Latex), 4 figures (Postscript

    Cosmic-ray physics and the Pierre Auger Observatory

    Get PDF
    One of the foremost issues in astrophysics today is that of the origin of ultrahigh- energy cosmic rays. The Pierre Auger Observatory is a broadly based international effort to make a high-statistics study of the upper-end of the cosmic-ray spectrum. Auger is the rst experiment designed to work in a hybrid detection mode. It consists of an array of 1600 particle detectors spread over 3000 km2 and four uorescence telescopes placed on the boundaries of the surface array. Recent measurements from Auger of the energy spectrum and mass composition above 1018 eV are described

    Hinting at primary composition using asymmetries in time distributions

    Get PDF
    Evidence of azimuthal asymmetries in the time structure and signal size have been found in non-vertical showers at the Pierre Auger Observatory. It has been previously shown that the asymmetry in time distributions offers a new possibility for the determination of the mass composition. New studies have demonstrated that the dependence of the asymmetry parameter in the rise-time and fall-time distributions with sec(theta) shows a clear peak. Both, the position of the peak, X_asymax, and the size of the asymmetry at X_asymax are sensitive to primary mass composition and have a small dependence on energy. In this paper a study of the discriminating power of the new observables to separate primary species is presented.Comment: To be published in the Proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10, 200

    Hadronic interactions models beyond collider energies

    Get PDF
    Studies of the influence of different hadronic models on extensive air showers at ultra-high energies are presented. The hadronic models considered are those implemented in the well-known QGSJET and SIBYLL event generators. The different approaches used in both codes to model the underlying physics is analyzed using computer simulations performed with the program AIRES. The most relevant observables for both single collisions and air showers are studied for primary energies ranging from 101410^{14} eV up to 1020.510^{20.5} eV. In addition, the evolution of lateral and energy distributions during the shower development is presented. Our analysis seems to indicate that the behaviour of shower observables does not largely reflect the strong differences observed in single collisions.Comment: 31 RevTex pages - 14 ps figure

    Confronting models on cosmic ray interactions with particle physics at LHC energies

    Full text link
    Inelastic pp collisions are dominated by soft (low momentum transfer) physics where perturbative QCD cannot be fully applied. A deep understanding of both soft and semi-hard processes is crucial for predictions of minimum bias and underlying events of the now coming on line pp Large Hadron Collider (LHC). Moreover, the interaction of cosmic ray particles entering in the atmosphere is extremely sensitive to these soft processes and consequently cannot be formulated from first principles. Because of this, air shower analyses strongly rely on hadronic interaction models, which extrapolate collider data several orders of magnitude. A comparative study of Monte Carlo simulations of pp collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET) and for collider physics (the PYTHIA multiparton model) is presented. The most relevant distributions are studied including those observables from diffractive events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference
    corecore