1 research outputs found

    Phase Structure of the Random-Plaquette Z_2 Gauge Model: Accuracy Threshold for a Toric Quantum Memory

    Full text link
    We study the phase structure of the random-plaquette Z_2 lattice gauge model in three dimensions. In this model, the "gauge coupling" for each plaquette is a quenched random variable that takes the value \beta with the probability 1-p and -\beta with the probability p. This model is relevant for the recently proposed quantum memory of toric code. The parameter p is the concentration of the plaquettes with "wrong-sign" couplings -\beta, and interpreted as the error probability per qubit in quantum code. In the gauge system with p=0, i.e., with the uniform gauge couplings \beta, it is known that there exists a second-order phase transition at a certain critical "temperature", T(\equiv \beta^{-1}) = T_c =1.31, which separates an ordered(Higgs) phase at T<T_c and a disordered(confinement) phase at T>T_c. As p increases, the critical temperature T_c(p) decreases. In the p-T plane, the curve T_c(p) intersects with the Nishimori line T_{N}(p) at the certain point (p_c, T_{N}(p_c)). The value p_c is just the accuracy threshold for a fault-tolerant quantum memory and associated quantum computations. By the Monte-Carlo simulations, we calculate the specific heat and the expectation values of the Wilson loop to obtain the phase-transition line T_c(p) numerically. The accuracy threshold is estimated as p_c \simeq 0.033.Comment: 24 pages, 14 figures, some clarification
    corecore