22 research outputs found

    Organoids in high-throughput and high-content screenings

    Get PDF
    Organoids are self-organized three-dimensional (3D) multicellular tissue cultures which derive from cancerous and healthy stem cells, sharing a highly similarity to the corresponding in vivo organs. Since their introduction in 2009, they have emerged as a valuable model for studying early embryogenesis, organ and tissue development, as well as tools in drug screening, disease modeling and personalized therapy. Organoids can now be established for various tissues, including brain, retina, thyroid, gastrointestinal, lung, liver, pancreas, and kidney. These micro-tissues resemble the native organ in terms of gene expression, protein expression, tissue architecture and cell-cell interactions. Despite the success of organoid-based research and the advances in patient-derived organoid culture, important challenges remain. In this review, we briefly showcase the evolution from the primary 3D systems to complex, multilayered 3D structures such as assembloids, gastruloids and ETiX embryoids. We discuss current developments in organoid research and highlight developments in organoid culturing systems and analysis tools which make organoids accessible for high-throughput and high-content screening. Finally, we summarize the potential of machine learning and computational modeling in conjunction with organoid systems

    Wnt6 is required for maxillary palp formation in Drosophila

    No full text

    Time-lapse and cleared imaging of mouse embryonic lung explants to study three-dimensional cell morphology and topology dynamics

    No full text
    Here, we present a protocol for collecting high-spatiotemporal-resolution datasets of undisturbed mouse embryonic epithelial rudiments using light-sheet fluorescence microscopy. We describe steps for rudiment dissection, clearing, and embedding for cleared and live imaging. We then detail procedures for light-sheet imaging followed by image processing and morphometric analysis. We provide protocol variations for imaging both growing and optically cleared lung explants to encourage the quantitative exploration of three-dimensional cell shapes, cell organization, and complex cell-cell dynamics. For complete details on the use and execution of this protocol, please refer to GĂłmez et al. (2021).1ISSN:2666-166

    Geometric effects position renal vesicles during kidney development.

    Get PDF
    During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development

    Organoids in high-throughput and high-content screenings

    No full text
    Organoids are self-organized three-dimensional (3D) multicellular tissue cultures which derive from cancerous and healthy stem cells, sharing a highly similarity to the corresponding in vivo organs. Since their introduction in 2009, they have emerged as a valuable model for studying early embryogenesis, organ and tissue development, as well as tools in drug screening, disease modeling and personalized therapy. Organoids can now be established for various tissues, including brain, retina, thyroid, gastrointestinal, lung, liver, pancreas, and kidney. These micro-tissues resemble the native organ in terms of gene expression, protein expression, tissue architecture and cell-cell interactions. Despite the success of organoid-based research and the advances in patient-derived organoid culture, important challenges remain. In this review, we briefly showcase the evolution from the primary 3D systems to complex, multilayered 3D structures such as assembloids, gastruloids and ETiX embryoids. We discuss current developments in organoid research and highlight developments in organoid culturing systems and analysis tools which make organoids accessible for high-throughput and high-content screening. Finally, we summarize the potential of machine learning and computational modeling in conjunction with organoid systems.ISSN:2673-271

    TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes

    Full text link
    During canonical Wnt signalling, the activity of nuclear β-catenin is largely mediated by the TCF/LEF family of transcription factors. To challenge this view, we used the CRISPR/Cas9 genome editing approach to generate HEK 293T cell clones lacking all four TCF/LEF genes. By performing unbiased whole transcriptome sequencing analysis, we found that a subset of β-catenin transcriptional targets did not require TCF/LEF factors for their regulation. Consistent with this finding, we observed in a genome-wide analysis that β-catenin occupied specific genomic regions in the absence of TCF/LEF Finally, we revealed the existence of a transcriptional activity of β-catenin that specifically appears when TCF/LEF factors are absent, and refer to this as β-catenin-GHOST response. Collectively, this study uncovers a previously neglected modus operandi of β-catenin that bypasses the TCF/LEF transcription factors

    First record of the non-native jellyfish Chrysaora cf. achlyos (Cnidaria: Pelagiidae) in the Mediterranean Sea

    No full text
    A single specimen of a Pelagiidae jellyfish (Scyphozoa) referable to the genus Chrysaora Péron and Lesueur, 1810 is reported from the port of Elefsina (Saronikos Gulf, Greece) on the basis of photographic evidence. Despite the absence of a voucher and the impossibility to check fine morphological features of diagnostic value, its recognizable features (coloration, umbrellar and oral arms morphology, number of tentacles, and squared shape of marginal lappets) are consistent with the group of the “Pacific” Chrysaora, and in particular with Chrysaora achlyos Martin, Gershwin, Burnett, Cargo and Bloom, 1997. The specimen is therefore identified here as Chrysaora cf. achlyos, a candidate as a new non-indigenous species in the Mediterranean Sea. Although this rare species has been often observed as single specimens even in its native range (northeastern Pacific Ocean), the occurrence of additional individuals cannot be excluded due to possible misidentifications with the native Chrysaora hysoscella (Linnaeus, 1767). Citizen science proved again to be a useful tool for NIS detection and monitoring, which overall calls for the necessity of focused and joint programmes along the whole Mediterranean coastline

    Geometric effects position renal vesicles during kidney development

    No full text
    During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.ISSN:2666-3864ISSN:2211-124

    Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage

    Get PDF
    We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease
    corecore