34 research outputs found

    Effect of Fiber-matrix Interface Decohesion on the Behavior of Thermoset and Thermoplastic Composites Reinforced with Natural Fibers: A Comparative Study

    Get PDF
    In this article, a comparative study was carried out on two types of thermosetting and thermoplastic matrices to study the effect of the fiber-matrix interface damage on the behavior of thermosetting and thermoplastic composites reinforced by the same natural alfa and wood fibers. The genetic modeling was based on the probabilistic formalism of Weibull. The results have been compared with those obtained by the nonlinear acoustic technique, the two results found to coincide perfectly. The numerical simulation also shows a good concordance with the real behavior of the materials studied, and shows that thermosetting composites are the most resistant to applied thermal stress by 21% compared to thermoplastic composites. Statistical analysis demonstrates that the correlation coefficient values found are very close to 1 (0.964 and 0.973), these values are very satisfactory, and confirm that the results obtained by the genetic model and the nonlinear acoustic technique are in very good agreement with the statistical analysis data. The experimental work presented by Antoine Le Duigou et al. and the work of Bodros et al. have shown that the use of natural fibers greatly improves the mechanical properties of composite materials

    Electronic structures and magnetic performance related to spintronics of Sr<sub>0.875</sub>Ti<sub>0.125</sub>S

    No full text
    International audienc

    Date and doum palm natural fibers as renewable resource for improving interface damage of cement composites materials

    No full text
    Abstract Background Various recent studies have investigated the use of traditional fibers (metallic or synthetic) as reinforcement in mortar. In recent times, there has been growing interest in using natural fibers as reinforcement in cement composites. This study was conducted to assess the impact of date palm, doum palm, and sisal fibers on the mechanical properties of cement composites. Genetic modeling was chosen to find the shear damage at the fiber-matrix interface of the three cement composites using genetic crossing operator, which allows us to calculate the damage at the interface using two damages of the matrix and the fibers, respectively. Results Our objective is to examine and evaluate the interface damage of date palm/mortar, doum palm/mortar and sisal/mortar under different mechanical tensile stresses ranging from 25 to 37 MPa with fiber volume fraction from 1 to 5%. It was found that the interface damage of date palm/mortar and doum palm/mortar cement composites was minimal compared to that of sisal/mortar. However, several researchers found that an increase in fiber volume fraction leads to decrease in mechanical properties and density in cement composites what we confirmed in this study that interface damage increases when the volume fraction increases. Conclusions The results are in line with the findings of a recent experimental study on the use of other plant fibers. Their results showed that incorporating ramie fibers resulted in a 27% increase in compressive strength, whereas the use of synthetic fibers resulted in 4% decrease in tensile strength in compression. It is recommended the use of doum and date palm natural fibers in the composition of mortars with a fiber volume fraction of 1 to 5% in order to reduce and avoid interface damage and limit the negative impact of synthetic fibers on the environment

    Ferromagnetism, half-metallicity and spin-polarised electronic structures characterisation insights in Ca<sub>1− x</sub>Ti<sub>x</sub>O

    No full text
    International audienceIn this study, we have computed the structural, electronic and half-metallic ferromagnetic properties of Ca1−xTixO compounds at concentrations x = 0.125, 0.25, 0.5 and 0.75 by employing the first-principle approaches of density functional theory. The generalised gradient approximation of Wu and Cohen (GGA-WC) is used to calculate the structural parameters, whereas the electronic structures and magnetic properties are characterised by the accurate Tran–Blaha-modiïŹed Becke–Johnson potential (TB-mBJ). The lattice constant, bulk modulus and indirect gap of CaO are in good agreement with other theoretical and experimental results. The Ca0.25Ti0.75O at x = 0.75 has metallic ferromagnetic nature. The Ca0.875Ti0.125O, Ca0.75Ti0.25O and Ca0.50Ti0.50O compounds have total magnetic moments of 2 ΌB per Ti atom with a half-metallic character, a spin polarisation of 100% and a large half-metallic gap of 1.345 eV for x = 0.125. Therefore, the Ca1−xTixO material with a low concentration of Ti is a true half-metallic ferromagnet and seems to be a promising candidate for semiconductor spintronics

    The Doping Effect on Ferromagnetic Arrangement and Electronic Structure of Cubic AlAs with Low Concentration of 3d (V, Cr, and Mn) Impurities

    No full text
    The doping effect of aluminum arsenide (AlAs) with 3d (TM = V, Cr, and Mn) of transition metal impurities gives new materials called diluted magnetic semiconductors, which have interesting electronic and magnetic properties for spintronics applications. We have used the full-potential linearized augmented plane wave (FP-LAPW) method to calculate the electronic band structures and magnetic properties of Al1−xTMxAs at low concentration x = 0.0625 of transition metal (TM = V, Cr, and Mn) atoms. We have found that the majority-spin states of Al0.9375TM 0.0625As compounds are metallic due to large p-d hybridization between 3d levels of TM and the 4p levels of As around Fermi level, whereas the minority-spin states have semiconductor character. These compounds exhibit a half-metallic behavior with spin polarization of 100%, where the ferromagnetism is originated from double-exchange mechanism. Therefore, Al0.9375TM0.0625As (TM = V, Cr, and Mn) materials seem to be good candidates for spin injection in the field of spintronics applications
    corecore