73 research outputs found

    Metal insulator transition in TlSr2CoO5 from orbital degeneracy and spin disproportionation

    Full text link
    To describe the metal insulator transition in the new oxide TlSr2CoO5 we investigate its electronic structure by LDA and model Hartree-Fock calculations. Within LDA we find a homogeneous metallic and ferromagnetic ground state, but when including the Coulomb interaction more explicitly within the Hartree-Fock approximation, we find an insulating state of lower energy with both spin and orbital order. We also interpret our results in terms of a simple model.Comment: 8 pages, 9 figure

    Collective effects in spin-crossover chains with exchange interaction

    Full text link
    The collective properties of spin-crossover chains are studied. Spin-crossover compounds contain ions with a low-spin ground state and low lying high-spin excited states and are of interest for molecular memory applications. Some of them naturally form one-dimensional chains. Elastic interaction and Ising exchange interaction are taken into account. The transfer-matrix approach is used to calculate the partition function, the fraction of ions in the high-spin state, the magnetization, susceptibility, etc., exactly. The high-spin-low-spin degree of freedom leads to collective effects not present in simple spin chains. The ground-state phase diagram is mapped out and compared to the case with Heisenberg exchange interaction. The various phases give rise to characteristic behavior at nonzero temperatures, including sharp crossovers between low- and high-temperature regimes. A Curie-Weiss law for the susceptibility is derived and the paramagnetic Curie temperature is calculated. Possible experiments to determine the exchange coupling are discussed.Comment: 9 pages, 13 color figures, published versio

    Evidence for a Low-Spin to Intermediate-Spin State Transition in LaCoO3

    Full text link
    We present measurements of the magnetic susceptibility and of the thermal expansion of a LaCoO3_3 single crystal. Both quantities show a strongly anomalous temperature dependence. Our data are consistently described in terms of a spin-state transition of the Co3+^{3+} ions with increasing temperature from a low-spin ground state to an intermediate-spin state without (100K - 500K) and with (>500K) orbital degeneracy. We attribute the lack of orbital degeneracy up to 500K to (probably local) Jahn-Teller distortions of the CoO6_6 octahedra. A strong reduction or disappearance of the Jahn-Teller distortions seems to arise from the insulator-to-metal transition around 500 K.Comment: an error in the scaling factor of Eq.(4) and consequently 2 values of table I have been corrected. The conclusions of the paper remain unchanged. See also: C. Zobel et al. Phys. Rev. B 71, 019902 (2005) and J. Baier et al. Phys. Rev. B 71, 014443 (2005

    Hydrothermal Synthesis of Delafossite-Type Oxides

    Get PDF
    The syntheses of copper and silver delafossite-type oxides from their constituent binary metal oxides, oxide hydroxides and hydroxides, by low temperature (<210 °C) and low pressure (<20 atm) hydrothermal reactions are described. Particular emphasis is placed on how the acid-base character of a constituent oxide determines its solubility and therefore whether a particular delafossite-type oxide can be synthesized, a strategy utilized by geologists and mineralogists to understand the conditions necessary for the synthesis of various minerals. Thus, the geochemical and corrosion science literature are shown to be useful in understanding the reaction conditions required for the syntheses of delafossite-type oxides and the relationship between reactant metal oxide acid-base character, solubility, aqueous speciation, and product formation. Manipulation of the key parameters, temperature, pressure, pH, and reactant solubility, results in broad families of phase-pure delafossite-type oxides in moderate to high yields for copper, CuBO2 (B) Al, Sc, Cr, Mn, Fe, Co, Ga, and Rh), and silver, AgBO2 (B ) Al, Sc, Fe, Co, Ni, Ga, Rh, In, and Tl)
    • 

    corecore