3 research outputs found

    Key Role of Polyphosphoinositides in Dynamics of Fusogenic Nuclear Membrane Vesicles

    Get PDF
    The role of phosphoinositides has been thoroughly described in many signalling and membrane trafficking events but their function as modulators of membrane structure and dynamics in membrane fusion has not been investigated. We have reconstructed models that mimic the composition of nuclear envelope precursor membranes with naturally elevated amounts of phosphoinositides. These fusogenic membranes (membrane vesicle 1(MV1) and nuclear envelope remnants (NER) are critical for the assembly of the nuclear envelope. Phospholipids, cholesterol, and polyphosphoinositides, with polyunsaturated fatty acid chains that were identified in the natural nuclear membranes by lipid mass spectrometry, have been used to reconstruct complex model membranes mimicking nuclear envelope precursor membranes. Structural and dynamic events occurring in the membrane core and at the membrane surface were monitored by solid-state deuterium and phosphorus NMR. “MV1-like” (PC∶PI∶PIP∶PIP2, 30∶20∶18∶12, mol%) membranes that exhibited high levels of PtdIns, PtdInsP and PtdInsP2 had an unusually fluid membrane core (up to 20% increase, compared to membranes with low amounts of phosphoinositides to mimic the endoplasmic reticulum). “NER-like” (PC∶CH∶PI∶PIP∶PIP2, 28∶42∶16∶7∶7, mol%) membranes containing high amounts of both cholesterol and phosphoinositides exhibited liquid-ordered phase properties, but with markedly lower rigidity (10–15% decrease). Phosphoinositides are the first lipids reported to counterbalance the ordering effect of cholesterol. At the membrane surface, phosphoinositides control the orientation dynamics of other lipids in the model membranes, while remaining unchanged themselves. This is an important finding as it provides unprecedented mechanistic insight into the role of phosphoinositides in membrane dynamics. Biological implications of our findings and a model describing the roles of fusogenic membrane vesicles are proposed

    Sterols and membrane dynamics

    No full text
    The effect of sterols from mammals, plants, fungi, and bacteria on model and natural membrane dynamics are reviewed, in the frame of ordering–disordering properties of membranes. It is shown that all sterols share a common property: the ability to regulate dynamics in order to maintain membranes in a microfluid state where it can convey important biological processes. Depending on the sterol class, this property is modulated by molecular modifications that have occurred during evolution. The role of sterols in rafts, antibiotic complexes, and in protecting membranes from the destructive action of amphipathic toxins is also discussed

    Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    No full text
    Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC) lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL)3-NH2 (LS2), and Ac-(LSSLLSL)3-NH2 (LS3), which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å). Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic). We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off-target effects
    corecore