155 research outputs found

    Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    Get PDF
    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light, which permits a number of simplifying approximations. Using photocurrent measurements as a probe of the absorptance, we show that the NWA optical properties can be accurately modeled with rigorous coupled-wave analysis. The densely structured NWAs behave as homogeneous birefringent materials into the ultraviolet with effective optical properties that are accurately modeled using the dielectric functions of bulk Si and SiO_2, coupled with a physical model for the NWA derived from ellipsometry and transmission electron microscopy

    Defects in GaN Nanowires

    Get PDF
    High resolution and cross-sectional transmission electron microscopy (HRTEM, XTEM) were used to characterize common defects in wurtzite GaN nanowires grown via the vapor-liquid-solid (VLS) mechanism. High resolution transmission electron microscopy showed that these nanowires contained numerous (001) stacking defects interspersed with cubic intergrowths. Using cross-sectional transmission electron microscopy, bicrystalline nanowires were discovered with two-fold rotational twin axes along their growth directions, and were concluded to grow along high index directions or vicinal to low index planes. A defect-mediated VLS growth model was used to account for the prevalence of these extended defects. Implications for nanowire growth kinetics and device behavior are discussed

    Effect of the polar surface on GaN nanostructure growth and morphology

    Get PDF
    Wurtzite gallium nitride nanostructures were grown by thermal reaction of gallium oxide and ammonia. The resulting morphology varied depending on ammonia flow rate. At 75 sccm only nanowires were obtained, while polyhedral crystals and nanobelts were observed at 175 sccm. Scanning electron microscopy and transmission electron microscopy revealed both thin smooth and thick corrugated nanowires. The growth axes of most of the smooth ones, as well as the nanobelts, were perpendicular to the c-axis (\u3c0001\u3e), while the corrugated nanowires and the large polyhedra grew parallel to \u3c0001\u3e. We propose a model to explain these morphology variations in terms of the Ga/N ratio and the different characteristic lengths of {0001} polar surfaces in the different nanostructures

    Self-branching in GaN Nanowires Induced by a Novel Vapor-Liquid-Solid Mechanism

    Get PDF
    Nanowires have great potential as building blocks for nanoscale electrical and optoelectronic devices. The difficulty in achieving functional and hierarchical nanowire structures poses an obstacle to realization of practical applications. While post-growth techniques such as fluidic alignment might be one solution, self-assembled structures during growth such as branches are promising for functional nanowire junction formation. In this study, we report vapor-liquid-solid (VLS) self-branching of GaN nanowires during AuPd-catalyzed chemical vapor deposition (CVD). This is distinct from branches grown by sequential catalyst seeding or vapor-solid (VS) mode. We present evidence for a VLS growth mechanism of GaN nanowires different from the well-established VLS growth of elemental wires. Here, Ga solubility in AuPd catalyst is limitless as suggested by a hypothetical pseudo-binary phase diagram, and the direct reaction between NH3 vapor and Ga in the liquid catalyst induce the nucleation and growth. The self-branching can be explained in the context of the proposed VLS scheme and migration of Ga-enriched AuPd liquid on Ga-stabilized polar surface of mother nanowires. This work is supported by DOE Grant No. DE-FG02-98ER45701

    Systematic study of contact annealing: Ambipolar silicon nanowire transistor with improved performance

    Get PDF
    High performance ambipolar silicon nanowire (SiNW) transistors were fabricated. SiNWs with uniform oxide sheath thicknesses of 6–7 nm were synthesized via a gas-flow-controlled thermal evaporation method. Field effect transistors (FETs) were fabricated using as-grown SiNWs. A two step annealing process was used to control contacts between SiNW and metal source and drain in order to enhance device performance. Initially ρ-channel devices exhibited ambipolar behavior after contact annealing at 400 ÂșC. Significant increases in on/off ratio and channel mobility were also achieved by annealing

    Synthesis and Post-growth Doping of Silicon Nanowires

    Get PDF
    High quality silicon nanowires (SiNWs) were synthesized via a thermal evaporation method without the use of catalysts. Scanning electron microscopy and transmission electron microscopy showed that SiNWs were long and straight crystalline silicon with an oxide sheath. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties. Devices on as-grown material were p-channel with channel mobilities 1 - 10 cm2 V-1 s-1. Post-growth vapor doping with bismuth converted these to n-channel behavior

    Applications of electron microscopy to the characterization of semiconductor nanowires

    Get PDF
    We review our current progress on semiconductor nanowires of ÎČ-Ga2O3, Si and GaN. These nanowires were grown using both vapor–solid (VS) and vapor–liquid–solid (VLS) mechanisms. Using transmission electron microscopy (TEM) we studied their morphological, compositional and structural characteristics. Here we survey the general morphologies, growth directions and a variety of defect structures found in our samples. We also outline a method to determine the nanowire growth direction using TEM, and present an overview of device fabrication and assembly methods developed using these nanowires

    Reduction of thermal conductivity in phononic nanomesh structures

    Get PDF
    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity Îș and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so Îș generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling Îș based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity

    Quantitating Cell–Cell Interaction Functions with Applications to Glioblastoma Multiforme Cancer Cells

    Get PDF
    We report on a method for quantitating the distance dependence of cell–cell interactions. We employ a microchip design that permits a multiplex, quantitative protein assay from statistical numbers of cell pairs, as a function of cell separation, with a 0.15 nL volume microchamber. We interrogate interactions between pairs of model brain cancer cells by assaying for six functional proteins associated with PI3k signaling. At short incubation times, cells do not appear to influence each other, regardless of cell separation. For 6 h incubation times, the cells exert an inhibiting influence on each other at short separations and a predominately activating influence at large separation. Protein-specific cell–cell interaction functions are extracted, and by assuming pairwise additivity of those interactions, the functions are shown to correctly predict the results from three-cell experiments carried out under the identical conditions
    • 

    corecore