223 research outputs found

    Black Hole Boundary Conditions and Coordinate Conditions

    Get PDF
    This paper treats boundary conditions on black hole horizons for the full 3+1D Einstein equations. Following a number of authors, the apparent horizon is employed as the inner boundary on a space slice. It is emphasized that a further condition is necessary for the system to be well posed; the ``prescribed curvature conditions" are therefore proposed to complete the coordinate conditions at the black hole. These conditions lead to a system of two 2D elliptic differential equations on the inner boundary surface, which coexist nicely to the 3D equation for maximal slicing (or related slicing conditions). The overall 2D/3D system is argued to be well posed and globally well behaved. The importance of ``boundary conditions without boundary values" is emphasized. This paper is the first of a series. This revised version makes minor additions and corrections to the previous version.Comment: 13 pages LaTeX, revtex. No figure

    Effect of charged partons on black hole production at the Large Hadron Collider

    Get PDF
    The cross section for black hole production in hadron colliders is calculated using a factorization hypothesis in which the parton-level process is integrated over the parton density functions of the protons. The mass, spin, charge, colour, and finite size of the partons are usually ignored. We examine the effects of parton electric charge on black hole production using the trapped-surface approach of general relativity. Accounting for electric charge of the partons could reduce the black hole cross section by one to four orders of magnitude at the Large Hadron Collider. The cross section results are sensitive to the Standard Model brane thickness. Lower limits on the amount of energy trapped behind the event horizon in the collision of charged particles are also calculated.Comment: corrected typo in figure 1b; added some clarification in 3 places; 21 pages, 9 figures, JHEP3 forma

    The energy and stability of D-term strings

    Get PDF
    Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected.Comment: 18 pages. v2: minor changes and references adde

    Type 0A 2D Black Hole Thermodynamics and the Deformed Matrix Model

    Full text link
    Recently, it has been proposed that the deformed matrix model describes a two-dimensional type 0A extremal black hole. In this paper, the thermodynamics of 0A charged non-extremal black holes is investigated. We observe that the free energy of the deformed matrix model to leading order in 1/q can be seen to agree to that of the extremal black hole. We also speculate on how the deformed matrix model is able to describe the thermodynamics of non-extremal black holes.Comment: 12 page

    Observational Consequences of a Landscape

    Full text link
    In this paper we consider the implications of the "landscape" paradigm for the large scale properties of the universe. The most direct implication of a rich landscape is that our local universe was born in a tunnelling event from a neighboring vacuum. This would imply that we live in an open FRW universe with negative spatial curvature. We argue that the "overshoot" problem, which in other settings would make it difficult to achieve slow roll inflation, actually favors such a cosmology. We consider anthropic bounds on the value of the curvature and on the parameters of inflation. When supplemented by statistical arguments these bounds suggest that the number of inflationary efolds is not very much larger than the observed lower bound. Although not statistically favored, the likelihood that the number of efolds is close to the bound set by observations is not negligible. The possible signatures of such a low number of efolds are briefly described.Comment: 21 pages, 4 figures v2: references adde

    Spontaneous Creation of Inflationary Universes and the Cosmic Landscape

    Full text link
    We study some gravitational instanton solutions that offer a natural realization of the spontaneous creation of inflationary universes in the brane world context in string theory. Decoherence due to couplings of higher (perturbative) modes of the metric as well as matter fields modifies the Hartle-Hawking wavefunction for de Sitter space. Generalizing this new wavefunction to be used in string theory, we propose a principle in string theory that hopefully will lead us to the particular vacuum we live in, thus avoiding the anthropic principle. As an illustration of this idea, we give a phenomenological analysis of the probability of quantum tunneling to various stringy vacua. We find that the preferred tunneling is to an inflationary universe (like our early universe), not to a universe with a very small cosmological constant (i.e., like today's universe) and not to a 10-dimensional uncompactified de Sitter universe. Such preferred solutions are interesting as they offer a cosmological mechanism for the stabilization of extra dimensions during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical string vacua, added reference

    Non-Commutativity and Unitarity Violation in Gauge Boson Scattering

    Get PDF
    We examine the unitarity properties of spontaneously broken non-commutative gauge theories. We find that the symmetry breaking mechanism in the non-commutative Standard Model of Chaichian et al. leads to an unavoidable violation of tree-level unitarity in gauge boson scattering at high energies. We then study a variety of simplified spontaneously broken non-commutative theories and isolate the source of this unitarity violation. Given the group theoretic restrictions endemic to non-commutative model building, we conclude that it is difficult to build a non-commutative Standard Model under the Weyl-Moyal approach that preserves unitarity.Comment: 31 page

    The Enhancon, Black Holes, and the Second Law

    Full text link
    We revisit the physics of five-dimensional black holes constructed from D5- and D1-branes and momentum modes in type IIB string theory compactified on K3. Since these black holes incorporate D5-branes wrapped on K3, an enhancon locus appears in the spacetime geometry. With a `small' number of D1-branes, the entropy of a black hole is maximised by including precisely half as many D5-branes as there are D1-branes in the black hole. Any attempts to introduce more D5-branes, and so reduce the entropy, are thwarted by the appearance of the enhancon locus above the horizon, which then prevents their approach. The enhancon mechanism thereby acts to uphold the Second Law of Thermodynamics. This result generalises: For each type of bound state object which can be made of both types of brane, we show that a new type of enhancon exists at successively smaller radii in the geometry, again acting to prevent any reduction of the entropy just when needed. We briefly explore the appearance of the enhancon in the black hole interior.Comment: 22 pages, 2 figures, latex, epsfig (v2: Fixed trivial typos.

    Noncommutative Self-dual Gravity

    Get PDF
    Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.Comment: 15+1 pages, LaTeX, no figure
    • …
    corecore