84 research outputs found

    Gauge theory, topological strings, and S-duality

    Get PDF
    We offer a derivation of the duality between the topological U(1) gauge theory on a Calabi-Yau 3-fold and the topological A-model on the same manifold. This duality was conjectured recently by Iqbal, Nekrasov, Okounkov, and Vafa. We deduce it from the S-duality of the IIB superstring. We also argue that the mirror version of this duality relates the topological B-model on a Calabi-Yau 3-fold and a topological sector of the Type IIA Little String Theory on the same manifold.Comment: 9 pages, latex. v2: a footnote has been added. The footnote corrects an inaccuracy in the original argument; the results are unchanged. v3: exposition improve

    Drinfeld-Manin Instanton and Its Noncommutative Generalization

    Full text link
    The Drinfeld-Manin construction of U(N) instanton is reformulated in the ADHM formulism, which gives explicit general solutions of the ADHM constraints for U(N) (N>=2k-1) k-instantons. For the N<2k-1 case, implicit results are given systematically as further constraints, which can be used to the collective coordinate integral. We find that this formulism can be easily generalized to the noncommutative case, where the explicit solutions are as well obtained.Comment: 17 pages, LaTeX, references added, mailing address added, clarifications adde

    Instanton calculus in R-R background and the topological string

    Get PDF
    We study a system of fractional D3 and D(-1) branes in a Ramond-Ramond closed string background and show that it describes the gauge instantons of N=2 super Yang-Mills theory and their interactions with the graviphoton of N=2 supergravity. In particular, we analyze the instanton moduli space using string theory methods and compute the prepotential of the effective gauge theory exploiting the localization methods of the instanton calculus showing that this leads to the same information given by the topological string. We also comment on the relation between our approach and the so-called Omega-background.Comment: 38 pages, 2 figures, JHEP class (included); final version to be pubished in JHE

    A note on instanton counting for N=2 gauge theories with classical gauge groups

    Full text link
    We study the prepotential of N=2 gauge theories using the instanton counting techniques introduced by Nekrasov. For the SO theories without matter we find a closed expression for the full prepotential and its string theory gravitational corrections. For the more subtle case of Sp theories without matter we discuss general features and compute the prepotential up to instanton number three. We also briefly discuss SU theories with matter in the symmetric and antisymmetric representations. We check all our results against the predictions of the corresponding Seiberg-Witten geometries.Comment: 24 pages, LaTeX. v2: refs added. v3: typos correcte

    Quasi-localized states on noncommutative solitons

    Full text link
    We consider noncommutative gauge theories which have zero mass states propagating along both commutative and noncommutative dimensions. Solitons in these theories generically carry U(m) gauge group on their world-volume. From the point of view of string theory, these solitons correspond to ``branes within branes''. We show that once the world-volume U(m) gauge theory is in the Higgs phase, light states become quasi-localized, rather than strictly localized on the soliton, i.e. they mix with light bulk modes and have finite widths to escape into the noncommutative dimensions. At small values of U(m) symmetry breaking parameters, these widths are small compared to the corresponding masses. Explicit examples considered are adjoint scalar field in the background of a noncommutative vortex in U(1)-Higgs theory, and gauge fields in instanton backgrounds in pure gauge noncommutative theories.Comment: 27 pages, references and comments added, final version to appear in JHE

    Supersymmetric D-brane Bound States with B-field and Higher Dimensional Instantons on Noncommutative Geometry

    Get PDF
    We classify supersymmetric D0-Dp bound states with a non-zero B-field by considering T-dualities of intersecting branes at angles. Especially, we find that the D0-D8 system with the B-field preserves 1/16, 1/8 and 3/16 of supercharges if the B-field satisfies the ``(anti-)self-dual'' condition in dimension eight. The D0-branes in this system are described by eight dimensional instantons on non-commutative R^8. We also discuss the extended ADHM construction of the eight-dimensional instantons and its deformation by the B-field. The modified ADHM equations admit a sort of the `fuzzy sphere' (embeddings of SU(2)) solution.Comment: 20 pages, LaTeX file, typos corrected and references adde

    Dualities in integrable systems and N=2 theories

    Full text link
    We discuss dualities of the integrable dynamics behind the exact solution to the N=2 SUSY YM theory. It is shown that T duality in the string theory is related to the separation of variables procedure in dynamical system. We argue that there are analogues of S duality as well as 3d mirror symmetry in the many-body systems of Hitchin type governing low-energy effective actions.Comment: 16 pages, Latex, Talk given at QFTHEP-99, Moscow, May 27-June

    The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4

    Get PDF
    We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized at the one-loop level by multiplicative dimensional renormalization of the coupling constant and fields of the theory. We compute the beta function of the theory and conclude that the theory is asymptotically free. We also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and the divergent contributions corrected accordingly. As a result the model turns out to be asymptotically fre

    NC Calabi-Yau Orbifolds in Toric Varieties with Discrete Torsion

    Get PDF
    Using the algebraic geometric approach of Berenstein et {\it al} (hep-th/005087 and hep-th/009209) and methods of toric geometry, we study non commutative (NC) orbifolds of Calabi-Yau hypersurfaces in toric varieties with discrete torsion. We first develop a new way of getting complex dd mirror Calabi-Yau hypersurfaces HΔdH_{\Delta}^{\ast d} in toric manifolds MΔ(d+1)M_{\Delta }^{\ast (d+1)} with a CrC^{\ast r} action and analyze the general group of the discrete isometries of HΔdH_{\Delta}^{\ast d}. Then we build a general class of dd complex dimension NC mirror Calabi-Yau orbifolds where the non commutativity parameters θμν\theta_{\mu \nu} are solved in terms of discrete torsion and toric geometry data of MΔ(d+1)M_{\Delta}^{(d+1)} in which the original Calabi-Yau hypersurfaces is embedded. Next we work out a generalization of the NC algebra for generic dd dimensions NC Calabi-Yau manifolds and give various representations depending on different choices of the Calabi-Yau toric geometry data. We also study fractional D-branes at orbifold points. We refine and extend the result for NC T2)/(Z2×Z2)% (T^{2}\times T^{2}\times T^{2})/(\mathbf{{Z_{2}}\times {Z_{2})}} to higher dimensional torii orbifolds in terms of Clifford algebra.Comment: 38 pages, Late

    Tachyon Condensation on Noncommutative Torus

    Full text link
    We discuss noncommutative solitons on a noncommutative torus and their application to tachyon condensation. In the large B limit, they can be exactly described by the Powers-Rieffel projection operators known in the mathematical literature. The resulting soliton spectrum is consistent with T-duality and is surprisingly interesting. It is shown that an instability arises for any D-branes, leading to the decay into many smaller D-branes. This phenomenon is the consequence of the fact that K-homology for type II von Neumann factor is labeled by R.Comment: LaTeX, 17 pages, 1 figur
    corecore