39,464 research outputs found

    Packing chromatic vertex-critical graphs

    Full text link
    The packing chromatic number χρ(G)\chi_{\rho}(G) of a graph GG is the smallest integer kk such that the vertex set of GG can be partitioned into sets ViV_i, i∈[k]i\in [k], where vertices in ViV_i are pairwise at distance at least i+1i+1. Packing chromatic vertex-critical graphs, χρ\chi_{\rho}-critical for short, are introduced as the graphs GG for which χρ(Gβˆ’x)<χρ(G)\chi_{\rho}(G-x) < \chi_{\rho}(G) holds for every vertex xx of GG. If χρ(G)=k\chi_{\rho}(G) = k, then GG is kk-χρ\chi_{\rho}-critical. It is shown that if GG is χρ\chi_{\rho}-critical, then the set {χρ(G)βˆ’Ο‡Ο(Gβˆ’x):Β x∈V(G)}\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\} can be almost arbitrary. The 33-χρ\chi_{\rho}-critical graphs are characterized, and 44-χρ\chi_{\rho}-critical graphs are characterized in the case when they contain a cycle of length at least 55 which is not congruent to 00 modulo 44. It is shown that for every integer kβ‰₯2k\ge 2 there exists a kk-χρ\chi_{\rho}-critical tree and that a kk-χρ\chi_{\rho}-critical caterpillar exists if and only if k≀7k\le 7. Cartesian products are also considered and in particular it is proved that if GG and HH are vertex-transitive graphs and diam(G)+diam(H)≀χρ(G){\rm diam(G)} + {\rm diam}(H) \le \chi_{\rho}(G), then G ░ HG\,\square\, H is χρ\chi_{\rho}-critical
    • …
    corecore