14,679 research outputs found

    PT-symmetry breaking and laser-absorber modes in optical scattering systems

    Full text link
    Using a scattering matrix formalism, we derive the general scattering properties of optical structures that are symmetric under a combination of parity and time-reversal (PT). We demonstrate the existence of a transition beween PT-symmetric scattering eigenstates, which are norm-preserving, and symmetry-broken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi, which can act simultaneously as a laser and coherent perfect absorber, occurs at discrete points in the broken symmetry phase, when a pole and zero of the S-matrix coincide.Comment: 4 pages, 4 figure

    General linewidth formula for steady-state multimode lasing in arbitrary cavities

    Full text link
    A formula for the laser linewidth of arbitrary cavities in the multimode non-linear regime is derived from a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes previous treatments of the effects of gain and openness described by the Petermann factor. The linewidth is expressed using quantities based on the non-linear scattering matrix, which can be computed from steady-state ab initio laser theory; unlike previous treatments, no passive cavity or phenomenological parameters are involved. We find that low cavity quality factor, combined with significant dielectric dispersion, can cause substantial deviations from the Schawlow-Townes-Petermann theory.Comment: 5 pages, 2 figure

    Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter

    Get PDF
    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating Universe with positive cosmological constant (Λ\Lambda), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ\Lambda. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ\Lambda, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain non-local aspects of the quanta of modified dark matter, which may lead to novel non-particle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles
    • …
    corecore