1,329 research outputs found
A5: Grafton Notch State Park: Glacial Gorges and Streams Under Pressure in the Mahoosic Range, Maine
Guidebook for field trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, p. 95-104
sFlt-1 and NTproBNP independently predict mortality in a cohort of heart failure patients.
Objective: Soluble fms-like tyrosine kinase-1 (sFlt-1) is a circulating receptor for VEGF-A. Recent reports of elevated plasma levels of sFlt-1 in coronary heart disease and heart failure (HF) motivated our study aimed at investigating the utility of sFlt-1 as a prognostic biomarker in heart failure patients. Methods: ELISA assays for sFlt-1 and NTproBNP were performed in n=858 patients from a prospective multicentre, observational study (the PEOPLE study) of outcome among patients after appropriate treatment for an episode of acute decompensated HF in New Zealand. Plasma was sampled at a baseline visit and stored at -80°C. Statistical tests were adjusted for patient age at baseline visit, skewed data were log-adjusted and the endpoint for clinical outcome analysis was all-cause death. Patients were followed for a median of 3.63 (range 0.74-5.50) years. Results: Mean baseline plasma sFlt-1 was 125 +/- 2.01 pg/ml. sFlt-1 was higher in patients with HF with reduced ejection fraction (HFrEF) (130 +/- 2.62 pg/ml, n=553) compared to those with HF with preserved EF (HFpEF) (117 +/-3.59 pg/ml, n=305; p=0.005). sFlt-1 correlated with heart rate (r=0.148, p<0.001), systolic blood pressure (r=-0.139, p<0.001) and LVEF (r=-0.088, p=0.019). A Cox proportional hazards model showed sFlt-1 was a predictor of all-cause death (HR=6.30, p<0.001) in the PEOPLE cohort independent of age, NTproBNP, ischaemic aetiology, and NYHA class (n=842, 274 deaths), established predictors of mortality in the PEOPLE cohort. Conclusion: sFlt-1 levels at baseline should be investigated further as a predictor of death; complementary to established prognostic biomarkers in heart failure
Focus on form: A critical review
‘Focus on form’ (FonF) is a central construct in task-based language teaching. The term was first introduced by Michael Long to refer to an approach where learners’ attention is attracted to linguistic forms as they engage in the performance of tasks. It contrasts with a structure-based approach – ‘focus on forms’ (FonFs) – where specific linguistic forms are taught directly and explicitly. However, there is perhaps no construct in second language acquisition (SLA) that has proved so malleable and shifted in meaning so much. This review article begins by considering how Long’s original definition of it has stretched over time and then offers an updated definition of the construct based on the view that the term is best used to refer to specific kinds of ‘activities’ or ‘procedures’ rather than to an ‘approach’. A classification of different types of focus-on-form activities/procedures is then presented. There follows a discussion of focus on form from a psycholinguistic and discoursal perspective along with a review of research relevant to these perspectives. The article addresses a number of criticisms that have been levelled against focus on form, with special consideration paid to how focus on form can be utilized in instructional contexts where more traditional (i.e. FonFs) approaches have been the norm
Experimental Characterization of Space Charge in IZIP Detectors
Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run with negligible ambient radiation, the detectors were found to lose ionization stability more quickly than expected. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, first results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.United States. Dept. of Energy (Grant DE-AC02-76SF00515)National Science Foundation (U.S.) (Awards 0705052, 0902182, 1004714, and 0802575
Validation of northern latitude Tropospheric Emission Spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis
We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%)
Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research
Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology
Validation of Phonon Physics in the CDMS Detector Monte Carlo
The SuperCDMS collaboration is a dark matter search effort aimed at detecting
the scattering of WIMP dark matter from nuclei in cryogenic germanium targets.
The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at
achieving a deeper understanding of the performance of the SuperCDMS detectors
and aiding the dark matter search analysis. We present results from validation
of the phonon physics described in the CDMS-DMC and outline work towards
utilizing it in future WIMP search analyses.Comment: 6 Pages, 5 Figures, Proceedings of Low Temperature Detectors 14
Conferenc
Computer-Aided Fabrication System Structure
Contains report on one research project.Defense Advanced Research Projects Agency Contract MDA 972 88-K-000
- …