6,212 research outputs found
Unbuckling the Seat Belt Defense in Arkansas
The “seat belt defense” has been hotly litigated over the decades in numerous jurisdictions across the United States. It is an affirmative defense that, when allowed, reduces a plaintiff’s recovery for personal injuries resulting from an automobile collision where the defendant can establish that those injuries would have been less severe or avoided entirely had the plaintiff been wearing an available seat belt. This is an unsettled legal issue in Arkansas, despite the growing number of cases in which the seat belt defense is raised as an issue. Most jurisdictions, including Arkansas, initially rejected the defense, but the basis for those rejections has grown less compelling over the decades. A growing number of states have recognized the defense in recent years. In light of recent developments in tort law and the factual reality of the proven efficacy of seat belts, it is time for the Arkansas Supreme Court to revisit the issue and rule definitively in favor of allowing evidence of seat belt non-use for damage reduction
Social Disorganization, Extra-Curricular Activities, and Delinquency
Neighborhood social disorganization has been found to be related to crime and deviance. In explaining this relationship, most have focused on specific factors of informal social control and collective efficacy. Using data from the 2000 National Household Survey on Drug Abuse (n = 12,800), the relationship between social disorganization and delinquent outcomes was examined by looking at extra-curricular activities as intervening mechanisms with logistic regression in SPSS. While the effect of social disorganization on delinquency remained significant, results indicated some evidence of mediation when accounting for extra-curricular activity measures predicting binge drinking. Specifically, the coefficient for social disorganization was reduced and significant at a lower threshold once extra-curricular activity measures were added in the models. Also, findings indicated different patterns of relationships found among the various extra-curricular activity categories concerning delinquent outcomes. Unlike other types of extracurricular activities, increased involvement in athletic activities was related to increased participation in delinquency
The exp-log normal form of types
Lambda calculi with algebraic data types lie at the core of functional
programming languages and proof assistants, but conceal at least two
fundamental theoretical problems already in the presence of the simplest
non-trivial data type, the sum type. First, we do not know of an explicit and
implemented algorithm for deciding the beta-eta-equality of terms---and this in
spite of the first decidability results proven two decades ago. Second, it is
not clear how to decide when two types are essentially the same, i.e.
isomorphic, in spite of the meta-theoretic results on decidability of the
isomorphism.
In this paper, we present the exp-log normal form of types---derived from the
representation of exponential polynomials via the unary exponential and
logarithmic functions---that any type built from arrows, products, and sums,
can be isomorphically mapped to. The type normal form can be used as a simple
heuristic for deciding type isomorphism, thanks to the fact that it is a
systematic application of the high-school identities.
We then show that the type normal form allows to reduce the standard beta-eta
equational theory of the lambda calculus to a specialized version of itself,
while preserving the completeness of equality on terms. We end by describing an
alternative representation of normal terms of the lambda calculus with sums,
together with a Coq-implemented converter into/from our new term calculus. The
difference with the only other previously implemented heuristic for deciding
interesting instances of eta-equality by Balat, Di Cosmo, and Fiore, is that we
exploit the type information of terms substantially and this often allows us to
obtain a canonical representation of terms without performing sophisticated
term analyses
Modelling of the ring current in Saturn's magnetosphere
International audienceThe existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980) and Ness et al. (1981, 1982), in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983) formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects. Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet)</b
Global MHD simulations of Saturns's magnetosphere at the time of Cassini approach
We present the results of a 3D global magnetohydrodynamic simulation of the magnetosphere of Saturn for the period of Cassini's initial approach and entry into the magnetosphere. We compare calculated bow shock and magnetopause locations with the Cassini measurements. In order to match the measured locations we use a substantial mass source due to the icy satellites (\sim1 x 10^{28} s^{-1} of water product ions). We find that the location of bow shock and magnetopause crossings are consistent with previous spacecraft measurements, although Cassini encountered the surfaces further from Saturn than the previously determined average location. In addition, we find that the shape of the model bow shock and magnetopause have smaller flaring angles than previous models and are asymmetric dawn-to-dusk. Finally, we find that tilt of Saturn's dipole and rotation axes results in asymmetries in the bow shock and magnetopause and in the magnetotail being hinged near Titan's orbit (\sim20 R _S)
Quasiperpendicular high Mach number Shocks
Shock waves exist throughout the universe and are fundamental to
understanding the nature of collisionless plasmas. Reformation is a process,
driven by microphysics, which typically occurs at high Mach number
supercritical shocks. While ongoing studies have investigated this process
extensively both theoretically and via simulations, their observations remain
few and far between. In this letter we present a study of very high Mach number
shocks in a parameter space that has been poorly explored and we identify
reformation using in situ magnetic field observations from the Cassini
spacecraft at 10 AU. This has given us an insight into quasi-perpendicular
shocks across two orders of magnitude in Alfven Mach number (MA) which could
potentially bridge the gap between modest terrestrial shocks and more exotic
astrophysical shocks. For the first time, we show evidence for cyclic
reformation controlled by specular ion reflection occurring at the predicted
timescale of ~0.3 {\tau}c, where {\tau}c is the ion gyroperiod. In addition, we
experimentally reveal the relationship between reformation and MA and focus on
the magnetic structure of such shocks to further show that for the same MA, a
reforming shock exhibits stronger magnetic field amplification than a shock
that is not reforming.Comment: Accepted and Published in Physical Review Letters (2015
- …