18 research outputs found
Comparative mitochondrial proteomics: perspective in human diseases
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets
Proteomic and functional characterization of a Chlamydomonas reinhardtii mutant lacking the mitochondrial alternative oxidase 1
In the present work we have isolated by RNA interference and characterized at the functional and the proteomic levels a Chlamydomonas reinhardtii strain devoid of the mitochondrial alternative oxidase (AOX). The AOX-deficient strain displays a doubling of the cell volume and biomass without any alteration of the generation time, a significantly higher ROS production, no change in total respiration rate, and a slight decrease of the photosynthesis efficiency. In order to identify the molecular adaptation underlying these phenotypical effects, we carried out a comparative proteomic study at the level of the mitochondrial and cellular soluble proteomes. Our results indicate a strong up-regulation of the ROS scavenging systems and important modifications of proteins involved in the primary metabolism, namely an increase of enzymes involved in anabolic pathways and a concomitant general down-regulation of enzymes of the main catabolic pathways