69 research outputs found

    Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    Full text link
    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.Comment: minor changes by referee reques

    Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    Full text link
    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.Comment: minor changes by referee reques

    UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments

    Full text link
    UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.Comment: 13 pages, 6 figures, 3 tables; To be submitted to Journal of Instrumentatio

    Common Origin of Soft mu-tau and CP Breaking in Neutrino Seesaw and the Origin of Matter

    Full text link
    Neutrino oscillation data strongly support mu-tau symmetry as a good approximate flavor symmetry of the neutrino sector, which has to appear in any viable theory for neutrino mass-generation. The mu-tau breaking is not only small, but also the source of Dirac CP-violation. We conjecture that both discrete mu-tau and CP symmetries are fundamental symmetries of the seesaw Lagrangian (respected by interaction terms), and they are only softly broken, arising from a common origin via a unique dimension-3 Majorana mass-term of the heavy right-handed neutrinos. From this conceptually attractive and simple construction, we can predict the soft mu-tau breaking at low energies, leading to quantitative correlations between the apparently two small deviations \theta_{23} - 45^o and \theta_{13} - 0^o. This nontrivially connects the on-going measurements of mixing angle \theta_{23} with the upcoming experimental probes of \theta_{13}. We find that any deviation of \theta_{23} - 45^o must put a lower limit on \theta_{13}. Furthermore, we deduce the low energy Dirac and Majorana CP violations from a common soft-breaking phase associated with mu-tau breaking in the neutrino seesaw. Finally, from the soft CP breaking in neutrino seesaw we derive the cosmological CP violation for the baryon asymmetry via leptogenesis. We fully reconstruct the leptogenesis CP-asymmetry from the low energy Dirac CP phase and establish a direct link between the cosmological CP-violation and the low energy Jarlskog invariant. We predict new lower and upper bounds on the \theta_{13} mixing angle, 1^o < \theta_{13} < 6^o. In addition, we reveal a new hidden symmetry that dictates the solar mixing angle \theta_12 by its group-parameter, and includes the conventional tri-bimaximal mixing as a special case, allowing deviations from it.Comment: 60pp, JCAP in Press, v2: only minor stylistic refinements (added Daya Bay's future sensitivity in Figs.2+8, shortened some eqs, added new Appendix-A and some references), comments are welcome

    θ13\theta_{13}, δ\delta and the neutrino mass hierarchy at a γ=350\gamma=350 double baseline Li/B β\beta-Beam

    Full text link
    We consider a β\beta-Beam facility where 8^8Li and 8^8B ions are accelerated at γ=350\gamma = 350, accumulated in a 10 Km storage ring and let decay, so as to produce intense νˉe\bar \nu_e and νe\nu_e beams. These beams illuminate two iron detectors located at L2000L \simeq 2000 Km and L7000L \simeq 7000 Km, respectively. The physics potential of this setup is analysed in full detail as a function of the flux. We find that, for the highest flux (10×101810 \times 10^{18} ion decays per year per baseline), the sensitivity to θ13\theta_{13} reaches sin22θ132×104\sin^2 2 \theta_{13} \geq 2 \times10^{-4}; the sign of the atmospheric mass difference can be identified, regardless of the true hierarchy, for sin22θ134×104\sin^2 2 \theta_{13} \geq 4\times10^{-4}; and, CP-violation can be discovered in 70% of the δ\delta-parameter space for sin22θ13103\sin^2 2 \theta_{13} \geq 10^{-3}, having some sensitivity to CP-violation down to sin22θ13104\sin^2 2 \theta_{13} \geq 10^{-4} for δ90|\delta| \sim 90^\circ.Comment: 35 pages, 20 figures. Minor changes, matches the published versio

    Improving Application of Bayesian Neural Networks to Discriminate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    The application of Bayesian Neural Networks(BNN) to discriminate neutrino events from backgrounds in reactor neutrino experiments has been described in Ref.\cite{key-1}. In the paper, BNN are also used to identify neutrino events in reactor neutrino experiments, but the numbers of photoelectrons received by PMTs are used as inputs to BNN in the paper, not the reconstructed energy and position of events. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of a toy detector are generated in the signal region. Compared to the BNN method in Ref.\cite{key-1}, more 8^{8}He/9^{9}Li background and uncorrelated background in the signal region can be rejected by the BNN method in the paper, but more fast neutron background events in the signal region are unidentified using the BNN method in the paper. The uncorrelated background to signal ratio and the 8^{8}He/9^{9}Li background to signal ratio are significantly improved using the BNN method in the paper in comparison with the BNN method in Ref.\cite{key-1}. But the fast neutron background to signal ratio in the signal region is a bit larger than the one in Ref.\cite{key-1}.Comment: 9 pages, 1 figure and 1 table, accepted by Journal of Instrumentatio

    On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments

    Get PDF
    Superbeam experiments can, in principle, achieve impressive sensitivities for CP violation in neutrino oscillations for large θ13\theta_{13}. We study how those sensitivities depend on assumptions about systematical uncertainties. We focus on the second phase of T2K, the so-called T2HK experiment, and we explicitly include a near detector in the analysis. Our main result is that even an idealised near detector cannot remove the dependence on systematical uncertainties completely. Thus additional information is required. We identify certain combinations of uncertainties, which are the key to improve the sensitivity to CP violation, for example the ratio of electron to muon neutrino cross sections and efficiencies. For uncertainties on this ratio larger than 2%, T2HK is systematics dominated. We briefly discuss how our results apply to a possible two far detector configuration, called T2KK. We do not find a significant advantage with respect to the reduction of systematical errors for the measurement of CP violation for this setup.Comment: 30 pages, 10 figures, version accepted for publication in JHE

    Neutrino Beams From Electron Capture at High Gamma

    Get PDF
    We investigate the potential of a flavor pure high gamma electron capture electron neutrino beam directed towards a large water cherenkov detector with 500 kt fiducial mass. The energy of the neutrinos is reconstructed by the position measurement within the detector and superb energy resolution capabilities could be achieved. We estimate the requirements for such a scenario to be competitive to a neutrino/anti-neutrino running at a neutrino factory with less accurate energy resolution. Although the requirements turn out to be extreme, in principle such a scenario could achieve as good abilities to resolve correlations and degeneracies in the search for sin^2(2 theta_13) and delta_CP as a standard neutrino factory experiment.Comment: 21 pages, 7 figures, revised version, to appear in JHEP, Fig.7 extended, minnor changes, results unchange

    Experimental Status of Neutrino Physics

    Full text link
    After a fascinating phase of discoveries, neutrino physics still has a few mysteries such as the absolute mass scale, the mass hierarchy, the existence of CP violation in the lepton sector and the existence of right-handed neutrinos. It is also entering a phase of precision measurements. This is what motivates the NUFACT 11 conference which prepares the future of long baseline neutrino experiments. In this paper, we report the status of experimental neutrino physics. We focus mainly on absolute mass measurements, oscillation parameters and future plans for oscillation experiments
    corecore