4,626 research outputs found
Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath
Transport critical current (Ic) was measured for Fe-sheathed MgB2 round
wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K.
Strong magnetic shielding by the iron sheath was observed, resulting in a
decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding,
interaction between the iron sheath and the superconductor resulted in a
constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for
effective shielding of 0.2T. This effect can be used to substantially improve
the field performance of MgB2/Fe wires at fields at least 3 times higher than
the range allowed by mere magnetic shielding by the iron sheath. The dependence
of Ic on the angle between field and current showed that the transport current
does not flow straight across the wire, but meanders between the grains
Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition
© The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in The Journal of The Electrochemical Society, 156(9), 2009.Bi/BiSb superlattice nanowires (SLNWs) with a controllable and very small bilayer thickness and a sharp segment interface were grown by adopting a charge-controlled pulse electrodeposition. The deposition parameters were optimized to ensure an epitaxial growth of the SLNWs with a preferential orientation. The segment length and bilayer thickness of the SLNWs can be controlled simply by changing the modulating time, and the consistency of the segment length can be well maintained by our approach. The Bravais law in the electrodeposited nanowires is verified by the SLNW structure. The current–voltage measurement shows that the SLNWs have good electrical conductance, particularly those with a smaller bilayer thickness. The Bi/BiSb SLNWs might have excellent thermoelectric performances.National Natural Science Foundation
of China and the National
Major Project of Fundamental Research for Nanomaterials and
Nanostructures
The -log-convexity of Domb's polynomials
In this paper, we prove the -log-convexity of Domb's polynomials, which
was conjectured by Sun in the study of Ramanujan-Sato type series for powers of
. As a result, we obtain the log-convexity of Domb's numbers. Our proof is
based on the -log-convexity of Narayana polynomials of type and a
criterion for determining -log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273
On the -log-convexity conjecture of Sun
In his study of Ramanujan-Sato type series for , Sun introduced a
sequence of polynomials as given by
and he conjectured that the polynomials are -log-convex. By
imitating a result of Liu and Wang on generating new -log-convex sequences
of polynomials from old ones, we obtain a sufficient condition for determining
the -log-convexity of self-reciprocal polynomials. Based on this criterion,
we then give an affirmative answer to Sun's conjecture
- …