4,626 research outputs found

    Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath

    Full text link
    Transport critical current (Ic) was measured for Fe-sheathed MgB2 round wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K. Strong magnetic shielding by the iron sheath was observed, resulting in a decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding, interaction between the iron sheath and the superconductor resulted in a constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for effective shielding of 0.2T. This effect can be used to substantially improve the field performance of MgB2/Fe wires at fields at least 3 times higher than the range allowed by mere magnetic shielding by the iron sheath. The dependence of Ic on the angle between field and current showed that the transport current does not flow straight across the wire, but meanders between the grains

    Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition

    Get PDF
    © The Electrochemical Society, Inc. 2009. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in The Journal of The Electrochemical Society, 156(9), 2009.Bi/BiSb superlattice nanowires (SLNWs) with a controllable and very small bilayer thickness and a sharp segment interface were grown by adopting a charge-controlled pulse electrodeposition. The deposition parameters were optimized to ensure an epitaxial growth of the SLNWs with a preferential orientation. The segment length and bilayer thickness of the SLNWs can be controlled simply by changing the modulating time, and the consistency of the segment length can be well maintained by our approach. The Bravais law in the electrodeposited nanowires is verified by the SLNW structure. The current–voltage measurement shows that the SLNWs have good electrical conductance, particularly those with a smaller bilayer thickness. The Bi/BiSb SLNWs might have excellent thermoelectric performances.National Natural Science Foundation of China and the National Major Project of Fundamental Research for Nanomaterials and Nanostructures

    The qq-log-convexity of Domb's polynomials

    Full text link
    In this paper, we prove the qq-log-convexity of Domb's polynomials, which was conjectured by Sun in the study of Ramanujan-Sato type series for powers of π\pi. As a result, we obtain the log-convexity of Domb's numbers. Our proof is based on the qq-log-convexity of Narayana polynomials of type BB and a criterion for determining qq-log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273

    On the qq-log-convexity conjecture of Sun

    Full text link
    In his study of Ramanujan-Sato type series for 1/π1/\pi, Sun introduced a sequence of polynomials Sn(q)S_n(q) as given by Sn(q)=∑k=0n(nk)(2kk)(2(n−k)n−k)qk,S_n(q)=\sum\limits_{k=0}^n{n\choose k}{2k\choose k}{2(n-k)\choose n-k}q^k, and he conjectured that the polynomials Sn(q)S_n(q) are qq-log-convex. By imitating a result of Liu and Wang on generating new qq-log-convex sequences of polynomials from old ones, we obtain a sufficient condition for determining the qq-log-convexity of self-reciprocal polynomials. Based on this criterion, we then give an affirmative answer to Sun's conjecture
    • …
    corecore