37 research outputs found

    Metal-Matrix Embedded Phononic Crystals

    Get PDF
    Metal-matrix embedded phononic crystals (MMEPCs) can be applied for noise and vibration reduction. Metal-matrix embedded phononic crystals (MMEPCs) consisting of double-sided stubs (single “hard” stubs/composite stubs) were introduced. The introduced MMEPCs are deposited on a two-dimensional locally resonant phononic crystal plate that consists of an array of rubber fillers embedded in a steel plate. The lower frequency complete bandgap will be produced in the MMEPCs with composite stubs by decoupling the spring-mass system of the resonator by means of the rubber filler. Then, the out-of-plane bandgap and the in-plane bandgap can be adjusted into the same lowest frequency range by the composite stubs. The broad complete bandgap will be produced in the metal-matrix embedded phononic crystals with single “hard” stubs by producing new kinds of resonance modes (in-plane and out-of-plane analogous-rigid modes) by introducing the single “hard” stubs, and then the out-of-plane bandgap and the in-plane bandgap can be broadened into the same frequency range by the single “hard” stubs. The proposed MMEPCs can be used for noise and vibration reduction

    Analysis of Energy Dissipation on the Sealing Surface of Premium Connection Based on a Microslip Shear Layer Model

    No full text
    In high production gas wells, premium connections are subject to alternating loads and vibration excitation due to the change of fluid pressure exerted on the tubing string. The energy dissipation on the sealing surface of premium connections affects the sealing performance of premium connections. The present study proposes a new energy dissipation analysis method for the sealing performance of premium connections using a microslip shear layer mode, a novel technique to overcome and improve the limitations of existing analysis method of premium connections. In this paper, based on a microslip shear layer model, a vibration equilibrium equation of premium connection was established with the constraints of the taper of the sealing surface, the thread, and the torque shoulder. Then, the control equilibrium equations of the stick and microslip were derived, and the critical microslip tangential force and force–displacement hysteresis curves under different interface parameters were obtained by solving the equilibrium equations. The influence of different interface parameters on the energy dissipation of premium connection was discussed by using a standardized regression coefficient method. It was found that the friction coefficient influenced both the minimum and maximum microslip tangential forces, while the shear layer stiffness influenced only the minimum microslip tangential force. The greater the stiffness of the shear layer, the smaller the minimum microslip tangential force and the relative displacement of the contact surface, which made it easier to generate energy dissipation. The influence of the friction coefficient on energy dissipation was much greater than the stiffness of the shear layer. There was positive correlation between the friction coefficient and energy dissipation. While, there was a negative correlation between the stiffness of shear layer and energy dissipation. The results can provide a theoretical guide for micro sealing failure mechanism of premium connections under dynamic loads and expand the analysis method of metal seals

    Analysis of Energy Dissipation on the Sealing Surface of Premium Connection Based on a Microslip Shear Layer Model

    No full text
    In high production gas wells, premium connections are subject to alternating loads and vibration excitation due to the change of fluid pressure exerted on the tubing string. The energy dissipation on the sealing surface of premium connections affects the sealing performance of premium connections. The present study proposes a new energy dissipation analysis method for the sealing performance of premium connections using a microslip shear layer mode, a novel technique to overcome and improve the limitations of existing analysis method of premium connections. In this paper, based on a microslip shear layer model, a vibration equilibrium equation of premium connection was established with the constraints of the taper of the sealing surface, the thread, and the torque shoulder. Then, the control equilibrium equations of the stick and microslip were derived, and the critical microslip tangential force and force–displacement hysteresis curves under different interface parameters were obtained by solving the equilibrium equations. The influence of different interface parameters on the energy dissipation of premium connection was discussed by using a standardized regression coefficient method. It was found that the friction coefficient influenced both the minimum and maximum microslip tangential forces, while the shear layer stiffness influenced only the minimum microslip tangential force. The greater the stiffness of the shear layer, the smaller the minimum microslip tangential force and the relative displacement of the contact surface, which made it easier to generate energy dissipation. The influence of the friction coefficient on energy dissipation was much greater than the stiffness of the shear layer. There was positive correlation between the friction coefficient and energy dissipation. While, there was a negative correlation between the stiffness of shear layer and energy dissipation. The results can provide a theoretical guide for micro sealing failure mechanism of premium connections under dynamic loads and expand the analysis method of metal seals

    Combustion Characteristics and NOx Emission through a Swirling Burner with Adjustable Flaring Angle

    No full text
    A swirling burner with a variable inner secondary air (ISA) flaring angle β is proposed and a laboratory scale opposed-firing furnace is built. Temperature distribution and NOx emission are designedly measured. The combustion characteristics affected by variable β are experimentally evaluated from ignition and burnout data. Meanwhile, NOx reduction by the variable β is analyzed through emissions measurements. Different inner/outer primary coal-air concentration ratios γ, thermal loads and coal types are considered in this study. Results indicate that β variation provides a new approach to promote ignition and burnout, as well as NOx emission reduction under conditions of fuel rich/lean combustion and load variation. The recommended β of a swirling burner under different conditions is not always constant. The optimal βopt of the swirling burner under all conditions for different burning performance are summarized in the form of curves, which could provide reference for exquisite combustion adjustment

    Electrochemical Performance of Steel Embedded in CSA Concrete and Its Interfacial Microstructure

    No full text
    Calcium sulfoaluminate cement (CSA) is a low-carbon cementitious material that significantly reduces alkalinity and produces calcium hydroxide-free (CH-free) matrix environment in comparison to ordinary Portland cement (OPC). It might be, however, less efficient towards the passivation of steel in concrete and further investigation before widespread adoption is required. In this project, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) on polished samples was employed to provide the interfacial characterization of steel reinforced CSA concrete and study the relationship of interfacial quality and corrosion resistance of the embedded steel. The galvanostatic polarization behavior indicates that the steel embedded in CSA concrete remains passive for 28 days in absence of Cl− ions and carbonation. Microstructure analysis has shown that there is an Al-enriched layer at interfacial zone in CSA concrete with the main hydration product of AH3, which is also alkaline and is expected to improve the steel passivity. Furthermore, the interfacial zone has markedly reduced porosity compared to the bulk matrix, which leads to reduced possibility of current flow between anode and cathode and therefore improves the corrosion resistance of the embedded reinforcement

    Numerical simulations of sand‐screen performance in unconsolidated prepacked gravel screen

    No full text
    Abstract This work addresses the ongoing challenge of optimizing sand control screens, attributed to a limited understanding of screen blocking. A novel one‐way computational fluid dynamics and discrete element method (CFD–DEM) coupling technique is presented to analyze the structural parameters of unconsolidated prepacked gravel screens (PPGS). CFD–DEM involves systematically investigating the width of the punched slot on the outer protective screen, the size of the gravel, and the efficiency of gravel packing to improve the antiblocking capability of unconsolidated PPGS. Results from numerical simulations reveal that under conditions of effective sand control, the amount of sand entering the gravel layer to the bridge (referred to as the sand pass rate) is positively correlated with the antilocking ability (referred to as oil productivity index) for unconsolidated PPGS. The efficiency of gravel packing has the most substantial effect on the antilocking performance of unconsolidated PPGS. The data suggest that appropriately reducing the efficiency of gravel packing can enhance the antilocking capability of unconsolidated PPGS. To design an unconsolidated PPGS with enhanced antilocking capability, the efficiency of gravel packing be determined first. Then, the gravel size is designed based on this efficiency, and the width relative to the gravel size is decided. This contemporary design principle diverges considerably from previous design principles for gravel‐packed sand control screens. Supporting validation experiments agree with simulation outcomes, suggesting the established one‐way CFD–DEM coupling method in this paper is suitable for analyzing the plugging mechanism of unconsolidated PPGS. Thus, the CFD–DEM coupling method improves the design of such screens for improved antiblocking performance

    CRACK PROPAGATION BEHAVIOR OF OIL WELL TUBING STEEL UNDER CORROSION FATIGUE LOADING IN CO<sub>2</sub>-CL-CORROSIVE ENVIRONMENT

    No full text
    Corrosion medium such as CO2-Cl-causing corrosion pits in the pipe wall exist usually in the service environment of well tubing. These pits will become the fatigue source of the fatigue damage of oil tubing under cyclic loading. In this paper,tubing steel of 13 Cr used in oil well is selected as research object,and CO2-Cl- corrosive environment is selected for simulating the service condition of tubing. In the corrosive environment,fatigue experiments are performed on standard CT specimens to study crack propagation behavior of 13 Cr steel. Crack propagation rate of the 13 Cr steel under cyclic loading is measured in air environment,in Cl- environment and in CO2-Cl- corrosive environment respectively. The change of corrosion fatigue crack propagation rate under the three environment condition is carried out. With the observation of fracture morphology, the mechanism of corrosion fatigue failure of the 13 Cr steel in the CO2-Cl- corrosive environment is analyzed

    Erosion of Premium Connection Cross-over Joint in Solid-liquid Flow

    No full text
    Hydraulic fracturing is a new technique which is used in oil yield to maximize its own production. The pumping of fracturing slurry flow through tubing collar can cause considerable mass loss of inner surface materials. This may pose a significantly potential risk even a well loss. Especially, the erosion phenomenon is particularly serious in the structure of variable diameter. Numerical simulation in this paper was used to get particle impact parameters, and it is combined with jet experiments to find out the main factors of BG-13Cr mass loss. Finally, the equation with experimental data was applied to predict erosion rate of premium connection cross-over joint inner wall

    Dynamic Modeling of Gear System Based on 3D Finite Element Model and Its Application in Spalling Fault Analysis

    No full text
    A reduced-order dynamic model, based on three-dimensional (3D) finite element model (FEM) and component modal synthesis technique (CMS), was presented for simulating the dynamic behavior of the spur gear system. The gear shaft and gear body were established via 3D elements to simulate bending and torsion of the gear system. The CMS technique was used to generate a reduced-order model of a spur gear system. A pair of mating teeth was assimilated to two different foundations (one for the pinion tooth and the other one for the gear tooth) linked in series by some independent springs, which was used to simulate the contact stiffness. The validity of the proposed model was verified by static analysis, dynamic analysis, and experimental analysis. The results show that the proposed model is an effective model. In addition, the proposed model has also been applied to analyze spur gear spalling faults. The results show that the dynamic response of the gear system is periodic vibration shock response due to the alternate meshing of single and double teeth. When the spalling fault occurs, some shock responses with significantly enhanced amplitude will be generated as the result of contact loss
    corecore