303 research outputs found
Self-Consistent Determination of Coupling Shifts in Broken SU(3)
The possibility that certain patterns of SU(3) symmetry breaking are dynamically enhanced in baryon-meson couplings is studied by bootstrap methods. For the strong couplings, a single dominant enhancement is found. It produces very large symmetry-breaking terms, transforming like an octet, as often conjectured. Experimental consequences are listed, such as a reduction of K-baryon couplings relative to π-baryon couplings which is in accord with the experimental weakness of K relative to π production in many circumstances, such as photoproduction and multi-BeV cosmic-ray collisions. For parity-violating nonleptonic couplings, a dominant octet enhancement is again found, as mentioned in a previous paper, which leads to an excellent fit with experiment. For parity-conserving nonleptonic couplings, on the other hand, several different enhancements compete, and the only conclusion we can draw is that terms with the "abnormal" transformation properties brought in by strong symmetry-breaking corrections are present. Our work provides a dynamical derivation of various phenomenological facts associated with SU(6), such as the dominance of the 35 representation in parity-violating nonleptonic decays
Coherent pairing states for the Hubbard model
We consider the Hubbard model and its extensions on bipartite lattices. We
define a dynamical group based on the -pairing operators introduced by
C.N.Yang, and define coherent pairing states, which are combinations of
eigenfunctions of -operators. These states permit exact calculations of
numerous physical properties of the system, including energy, various
fluctuations and correlation functions, including pairing ODLRO to all orders.
This approach is complementary to BCS, in that these are superconducting
coherent states associated with the exact model, although they are not
eigenstates of the Hamiltonian.Comment: 5 pages, RevTe
Test Matter in a Spacetime with Nonmetricity
Examples in which spacetime might become non-Riemannian appear above Planck
energies in string theory or, in the very early universe, in the inflationary
model. The simplest such geometry is metric-affine geometry, in which {\it
nonmetricity} appears as a field strength, side by side with curvature and
torsion. In matter, the shear and dilation currents couple to nonmetricity, and
they are its sources. After reviewing the equations of motion and the Noether
identities, we study two recent vacuum solutions of the metric-affine gauge
theory of gravity. We then use the values of the nonmetricity in these
solutions to study the motion of the appropriate test-matter. As a
Regge-trajectory like hadronic excitation band, the test matter is endowed with
shear degrees of freedom and described by a world spinor.Comment: 14 pages, file in late
Quasi-exact solvability beyond the SL(2) algebraization
We present evidence to suggest that the study of one dimensional
quasi-exactly solvable (QES) models in quantum mechanics should be extended
beyond the usual \sla(2) approach. The motivation is twofold: We first show
that certain quasi-exactly solvable potentials constructed with the \sla(2)
Lie algebraic method allow for a new larger portion of the spectrum to be
obtained algebraically. This is done via another algebraization in which the
algebraic hamiltonian cannot be expressed as a polynomial in the generators of
\sla(2). We then show an example of a new quasi-exactly solvable potential
which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on
superintegrabilit
Group Theory Approach to Band Structure: Scarf and Lame Hamiltonians
The group theoretical treatment of bound and scattering state problems is
extended to include band structure. We show that one can realize Hamiltonians
with periodic potentials as dynamical symmetries, where representation theory
provides analytic solutions, or which can be treated with more general spectrum
generating algebraic methods. We find dynamical symmetries for which we derive
the transfer matrices and dispersion relations. Both compact and non-compact
groups are found to play a role.Comment: 4 pages + 2 figs. Revtex/epsf. To appear: Phys Rev Lett, v.83 199
On the Decay of Soliton Excitations
In field theory the scattering about spatially extended objects, such as
solitons, is commonly described by small amplitude fluctuations. Since soliton
configurations often break internal symmetries, excitations exist that arise
from quantizing the modes that are introduced to restore these symmetries.
These modes represent collective distortions and cannot be treated as small
amplitude fluctuations. Here we present a method to embrace their contribution
to the scattering matrix. In essence this allows us to compute the decay widths
of such collective excitations. As an example we consider the Skyrme model for
baryons and explain that the method helps to solve the long--standing Yukawa
problem in chiral soliton models.Comment: 8 pages, to appear in the proceedings (J Phys A) of QFEXT 2007
(Leipzig
UNDERSTANDING THE SCALAR MESON NONET
It is shown that one can fit the available data on the a0(980), f0(980),
f0(1300) and K*0(1430) mesons as a distorted 0++ qq bar nonet using very few
(5-6) parameters and an improved version of the unitarized quark model. This
includes all light two-pseudoscalar thresholds, constraints from Adler zeroes,
flavour symmetric couplings, unitarity and physically acceptable analyticity.
The parameters include a bare uu bar or dd bar mass, an over-all coupling
constant, a cutoff and a strange quark mass of 100 MeV, which is in accord with
expectations from the quark model.
It is found that in particular for the a0(980) and f0(980) the KK bar
component in the wave function is large, i.e., for a large fraction of the time
the qq bar state is transformed into a virtual KK bar pair. This KK bar
component, together with a similar component of eta' pi for the a0(980) , and
eta eta, eta eta' and eta' eta' components for the f0(980), causes the
substantial shift to a lower mass than what is naively expected from the qq bar
component alone.
Mass, width and mixing parameters, including sheet and pole positions, of the
four resonances are given, with a detailed pedagogical discussion of their
meaning.Comment: 35 pages in plain latex (ZPC in press), 10 figures obtainable from
the author ([email protected]) with regular mail or as a large PS
fil
Effects of growing conditions and source habitat on plant traits and functional group definition
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72499/1/j.1365-2435.2001.00487.x.pd
Kondo effect in systems with dynamical symmetries
This paper is devoted to a systematic exposure of the Kondo physics in
quantum dots for which the low energy spin excitations consist of a few
different spin multiplets . Under certain conditions (to be
explained below) some of the lowest energy levels are nearly
degenerate. The dot in its ground state cannot then be regarded as a simple
quantum top in the sense that beside its spin operator other dot (vector)
operators are needed (in order to fully determine its quantum
states), which have non-zero matrix elements between states of different spin
multiplets . These "Runge-Lenz"
operators do not appear in the isolated dot-Hamiltonian (so in some sense they
are "hidden"). Yet, they are exposed when tunneling between dot and leads is
switched on. The effective spin Hamiltonian which couples the metallic electron
spin with the operators of the dot then contains new exchange terms,
beside the ubiquitous ones . The operators and generate a
dynamical group (usually SO(n)). Remarkably, the value of can be controlled
by gate voltages, indicating that abstract concepts such as dynamical symmetry
groups are experimentally realizable. Moreover, when an external magnetic field
is applied then, under favorable circumstances, the exchange interaction
involves solely the Runge-Lenz operators and the corresponding
dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is
realized in triple quantum dot with four electrons.Comment: 24 two-column page
- …