6 research outputs found
Identification of nonlinear systems using hybrid functions
Most real systems have nonlinear behavior and thus model linearization may not produce an accurate representation of them. This paper presents a method based on hybrid functions to identify the parameters of nonlinear real systems. A hybrid function is a combination of two groups of orthogonal functions: piecewise orthogonal functions (e.g. Block-Pulse) and continuous orthogonal functions (e.g. Legendre polynomials). These functions are completed with an operational matrix of integration and a product matrix. Therefore, it is possible to convert nonlinear differential and integration equations into algebraic equations. After mathematical manipulation, the unknown linear and nonlinear parameters are identified. As an example, a mechanical system with single degree of freedom is simulated using the proposed method and the results are compared against those of an existing approach.<br /
Modeling and control of flatness in cold rolling mill using fuzzy petri nets
Today, having a good flatness control in steel industry is essential to ensure an overall product quality, productivity and successful processing. Flatness error, given as difference between measured strip flatness and target curve, can be minimized by modifying roll gap with various control functions. In most practical systems, knowing the definition of the model in order to have an acceptable control is essential. In this paper, a fuzzy Petri net method for modeling and control of flatness in cold rolling mill is developed. The method combines the concepts of Petri net and fuzzy control theories. It focuses on the fuzzy decision making problems of the fuzzy rule tree structures. The method is able to detect and recover possible errors that can occur in the fuzzy rule of the knowledge-based system. The method is implemented and simulated. The results show that its error is less than that of a PI conventional controller.<br /
Direct method for optimal power management in hybrid electric vehicles
Hybrid electric vehicles are powered by an electric system and an internal combustion engine. The components of a hybrid electric vehicle need to be coordinated in an optimal manner to deliver the desired performance. This paper presents an approach based on direct method for optimal power management in hybrid electric vehicles with inequality constraints. The approach consists of reducing the optimal control problem to a set of algebraic equations by approximating the state variable which is the energy of electric storage, and the control variable which is the power of fuel consumption. This approximation uses orthogonal functions with unknown coefficients. In addition, the inequality constraints are converted to equal constraints. The advantage of the developed method is that its computational complexity is less than that of dynamic and non-linear programming approaches. Also, to use dynamic or non-linear programming, the problem should be discretized resulting in the loss of optimization accuracy. The propsed method, on the other hand, does not require the discretization of the problem producing more accurate results. An example is solved to demonstrate the accuracy of the proposed approach. The results of Haar wavelets, and Chebyshev and Legendre polynomials are presented and discussed. © 2011 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg