630 research outputs found
The minimum wage in Germany: what brought the state in?
A statutory minimum wage has been introduced in Germany, in the face of business opposition but abetted by union support. The political coalition in favour of minimum wage regulation brought together the centre-left and the centre-right with the argument that regulation is needed to prevent disfunctional interaction between low wages and the social security system. Thus the dualization which characterises Germany’s inegalitarian form of coordinated capitalism has provoked a corrective political response. The paper traces the long path to government intervention and assesses why employers were unable, or unwilling, to pre-empt intervention by maintaining the coverage of collective bargaining. It is argued that market liberalization has had a paradoxical effect on employer power: intense domestic as well as international competition has reduced employers’ capacity to act strategically to fend off regulation by the government
Investigation and Numerical Simulation of a High-Current AC Circuit Breaker
The article is devoted to the study of the high-current AC circuit breaker. The results of the study are presented for various configurations of the arc divider. The study includes methods of spectral diagnostics and high-speed camera shooting synchronized with the electrical characteristics of the circuit breaker (current, voltage) in time. The obtained results allow to determine the composition of the plasma and dynamics of changes in the composition of the discharge in time. Calculation of the plasma composition and properties is made according to the obtained data, which makes it possible to take into account the products of circuit breaker materials ablation in numerical simulation. Non-stationary two-dimensional mathematical model with a moving mesh is developed. The obtained results allow to correct and verify the developed mathematical model of the circuit breaker operation. The evaluation of the arc divider influence is presented in the article
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be
responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal
electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the
shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS)
facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD)
instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm
scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high
value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a
deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at
a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with
absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and
persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed.
Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results,
beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation
instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of
collisionless absorption in the LPI energy balance
Full characterization of vibrational coherence in a porphyrin chromophore by two-dimensional electronic spectroscopy
In this work we present experimental and calculated two-dimensional electronic spectra for a 5,15-bisalkynyl porphyrin chromophore. The lowest energy electronic Qy transition couples mainly to a single 380 cm–1 vibrational mode. The two-dimensional electronic spectra reveal diagonal and cross peaks which oscillate as a function of population time. We analyze both the amplitude and phase distribution of this main vibronic transition as a function of excitation and detection frequencies. Even though Feynman diagrams provide a good indication of where the amplitude of the oscillating components are located in the excitation-detection plane, other factors also affect this distribution. Specifically, the oscillation corresponding to each Feynman diagram is expected to have a phase that is a function of excitation and detection frequencies. Therefore, the overall phase of the experimentally observed oscillation will reflect this phase dependence. Another consequence is that the overall oscillation amplitude can show interference patterns resulting from overlapping contributions from neighboring Feynman diagrams. These observations are consistently reproduced through simulations based on third order perturbation theory coupled to a spectral density described by a Brownian oscillator model
Array of time-of-flight diamond detectors for particle discrimination in laser driven p-11B fusion experiments
The detection of radiation emission in laser induced plasma experiments is an helpful method for gaining information on the physics of laser-matter interaction. Time-of-Flight (TOF) approach is a powerful and effective method to obtain timely spectra of particles accelerated from laser-generated plasma. To this respect, diamond-based detectors are very attractive due to their interesting features such as fast signal collection time, signal proportional to the energy deposited by the incident radiation, blindness to visible radiation, high radiation hardness and low leakage current at room temperature operation. Unfortunately, they cannot supply discrimination on the species of the incoming ions, but only their energies. This may be overcome using specific filtering foils to exploit the different stopping powers of ions of different species and energies. In this work we describe the method to distinguish particles using an array of TOF diamond detectors. A first prototype array, consisting of 2×2 diamond detectors, nominally identical and featuring by aluminum filters of different thicknesses, was developed and preliminary tested at PALS facility in Prague
Banner News
https://openspace.dmacc.edu/banner_news/1277/thumbnail.jp
Development of a single‐cell X‐ray fluorescence flow cytometer
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122448/1/jsy2pp5083.pd
Identifiable Acetylene Features Predicted for Young Earth-like Exoplanets with Reducing Atmospheres Undergoing Heavy Bombardment
The chemical environments of young planets are assumed to be largely influenced by the impacts of bodies lingering on unstable trajectories after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts within the context of reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. A terawatt high-power laser was selected in order to simulate the airglow plasma and blast wave surrounding the impactor. The chemical results of these experiments are then applied to a theoretical atmospheric model. The impact simulation results in substantial volume mixing ratios within the reactor of 5% hydrogen cyanide (HCN), 8% acetylene (C2H2), 5% cyanoacetylene (HC3N), and 1% ammonia (NH3). These yields are combined with estimated impact rates for the early Earth to predict surface boundary conditions for an atmospheric model. We show that impacts might have served as sources of energy that would have led to steady-state surface quantities of 0.4% C2H2, 400 ppm HCN, and 40 ppm NH3. We provide simulated transit spectra for an Earth-like exoplanet with this reducing atmosphere during and shortly after eras of intense impacts. We predict that acetylene is as observable as other molecular features on exoplanets with reducing atmospheres that have recently gone through their own "heavy bombardments," with prominent features at 3.05 and 10.5 μm
- …