396 research outputs found
Rapid method of obtaining area under curve for any compartment of any linear pharmacokinetic model in terms of rate constants
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45066/1/10928_2005_Article_BF01063618.pd
A development cooperation Erasmus Mundus partnership for capacity building in earthquake mitigation science and higher education
Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on
capitalization on policies, on technology and research results. An important role is played by education, than contribute to
strengthening technical curricula of future practitioners and researchers through university and higher education programs. EUNICE
is a European Commission funded higher education partnership for international development cooperation with the
objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project
involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on
seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility
scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia,
Maldives, North Korea, Philippines, and Sri Lanka who plan to enroll in school or conduct research at one of five European
partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being
involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of earthquake
engineering, seismology, disaster risk management and urban planning
EU-NICE, Eurasian University Network for International Cooperation in Earthquakes
Despite the remarkable scientific advancements of earthquake engineering and seismology in many countries,
seismic risk is still growing at a high rate in the world’s most vulnerable communities. Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on
technology and research results. An important role is played by education, than contribute to strengthening
technical curricula of future practitioners and researchers through university and higher education programmes.
In recent years an increasing number of initiatives have been launched in this field at the international and global
cooperation level. Cooperative international academic research and training is key to reducing the gap between
advanced and more vulnerable regions. EU-NICE is a European Commission funded higher education
partnership for international development cooperation with the objective to build capacity of individuals who
will operate at institutions located in seismic prone Asian Countries. The project involves five European
Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic
mitigation, disaster risk management and international development.
The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh,
China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and
Sri Lanka who plan to enrol in school or conduct research at one of five European partner universities in Italy,
Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in
scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
This high number of mobilities and activities is selected and designed so as to produce an overall increase of
knowledge that can result in an impact on earthquake mitigation. Researchers, future policymakers and
practitioners build up their curricula over a range of disciplines in the fields of engineering, seismology, disaster
risk management and urban planning. Specific educational and research activities focus on earthquake risk
mitigation related topics such as: anti-seismic structural design, structural engineering, advanced computer
structural collapse analysis, seismology, experimental laboratory studies, international and development issues in
disaster risk management, social-economical impact studies, international relations and conflict resolution
Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures
We have used time-resolved scanning Kerr microscopy and micromagnetic simulations to demonstrate that, when driven by the spatially uniform microwave field, the edges of patterned magnetic samples represent both efficient and highly tunable sources of propagating spin waves. The excitation is due to the local enhancement of the resonance frequency induced by the non-uniform dynamic demagnetizing field generated by precessing magnetization aligned with the edges. Our findings represent a crucial step forward in the design of nanoscale spin-wave sources for magnonic architectures and are also highly relevant to the understanding and interpretation of magnetization dynamics driven by spatially uniform magnetic fields in patterned magnetic samples
Graded magnonic index and spin wave fano resonances in magnetic structures: Excite, direct, capture
This is the author accepted manuscript. The final version is available from Pan Stanford via the DOI in this record Starting from the general topic and fundamentals of magnonics, we discuss and provide demonstrations of exciting new physics and technological opportunities associated with the graded magnonic index and spin wave Fano resonances, highlighting them as the next big thing in magnonics research.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 202
Book reviews
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46105/1/168_2005_Article_BF01287741.pd
Recommended from our members
The effect of brown stain on drying characteristics of sugar pine : preliminary observations
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
- …