6 research outputs found
BMJ Open
Introduction Neonatal sepsis outreaches all causes of neonatal mortality worldwide and remains a major societal burden in low and middle income countries. In addition to limited resources, endemic morbidities, such as malaria and prematurity, predispose neonates and infants to invasive infection by altering neonatal immune response to pathogens. Nevertheless, thoughtful epidemiological, diagnostic and immunological evaluation of neonatal sepsis and the impact of gestational malaria have never been performed. Methods and analysis A prospective longitudinal multicentre follow-up of 580 infants from birth to 3 months of age in urban and suburban Benin will be performed. At delivery, and every other week, all children will be examined and clinically evaluated for occurrence of sepsis. At delivery, cord blood systematic analysis of selected plasma and transcriptomic biomarkers (procalcitonin, interleukin (IL)-6, IL-10, IP10, CD74 and CX3CR1) associated with sepsis pathophysiology will be evaluated in all live births as well as during the follow-up, and when sepsis will be suspected. In addition, whole blood response to selected innate stimuli and extensive peripheral blood mononuclear cells phenotypic characterisation will be performed. Reference intervals specific to sub-Saharan neonates will be determined from this cohort and biomarkers performances for neonatal sepsis diagnosis and prognosis tested. Ethics and dissemination Ethical approval has been obtained from the Comité d’Ethique de la Recherche – Institut des Sciences Biomédicales Appliquées (CER-ISBA 85 - 5 April 2016, extended on 3 February 2017). Results will be disseminated through international presentations at scientific meetings and publications in peer-reviewed journals
Caractérisation des liquides cérébro-spinaux dans les comas pédiatriques non-traumatiques en one d'endémie palustre
International audienc
Non-traumatic coma in young children in Benin: are viral and bacterial infections gaining ground on cerebral malaria?
International audienceBackground While malaria morbidity and mortality have declined since 2000, viral central nervous system infections appear to be an important, underestimated cause of coma in malaria-endemic Eastern Africa. We aimed to describe the etiology of non-traumatic comas in young children in Benin, as well as their management and early outcomes, and to identify factors associated with death.Methods From March to November 2018, we enrolled all HIV-negative children aged between 2 and 6 years, with a Blantyre Coma Score ≤ 2, in this prospective observational study. Children were screened for malaria severity signs and assessed using a systematic diagnostic protocol, including blood cultures, malaria diagnostics, and cerebrospinal fluid analysis using multiplex PCR. To determine factors associated with death, univariate and multivariate analyses were performed.Results From 3244 admissions, 84 children were included: malaria was diagnosed in 78, eight of whom had a viral or bacterial co-infection. Six children had a non-malarial infection or no identified cause. The mortality rate was 29.8% (25/84), with 20 children dying in the first 24 h. Co-infected children appeared to have a poorer prognosis. Of the 76 children who consulted a healthcare professional before admission, only 5 were prescribed adequate antimalarial oral therapy. Predictors of early death were jaundice or increased bilirubin [odd ratio ( OR )= 8.6; 95% confidential interval ( CI ): 2.03–36.1] and lactate > 5 mmol/L ( OR = 5.1; 95% CI : 1.49–17.30). Antibiotic use before admission ( OR = 0.1; 95% CI : 0.02–0.85) and vaccination against yellow fever ( OR = 0.2, 95% CI : 0.05–0.79) protected against mortality.Conclusions Infections were found in all children who died, and cerebral malaria was by far the most common cause of non-traumatic coma. Missed opportunities to receive early effective antimalarial treatment were common. Other central nervous system infections must be considered in their management. Some factors that proved to be protective against early death were unexpected
Prospective multicentre study of host response signatures in neonatal sepsis in Sub Saharan Africa
International audienceFew biomarkers for sepsis diagnosis are commonly used in neonatal sepsis. While the role of host response is increasingly recognized in sepsis pathogenesis and prognosis, there is a need for evaluating new biomarkers targeting host response in regions where sepsis burden is high and medico-economic resources are scarce. The objective of the study is to evaluate diagnostic and prognostic accuracy of biomarkers of neonatal sepsis in Sub Saharan Africa. This prospective multicentre study included newborn infants delivered in the Abomey-Calavi region in South Benin and their follow-up from birth to 3 months of age. Accuracy of transcriptional (CD74, CX3CR1), proteic (PCT, IL-6, IL-10, IP-10) biomarkers and clinical characteristics to diagnose and prognose neonatal sepsis were measured. At delivery, cord blood from all consecutive newborns were sampled and analysed, and infants were followed for a 12 weeks' period. Five hundred and eighty-one newborns were enrolled. One hundred and seventy-two newborns developed neonatal sepsis (29.6%) and death occurred in forty-nine infants (8.4%). Although PCT, IL-6 and IP-10 levels were independently associated with sepsis diagnosis, diagnostic accuracy of clinical variables combinations was similar to combinations with biomarkers and superior to biomarkers alone. Nonetheless, CD74, being the only biomarkers independently associated with mortality, showed elevated prognosis accuracy (AUC > 0.9) either alone or in combination with other biomarkers (eg. CD74/IP-10) or clinical criterion (eg. Apgar 1, birth weight). These results suggest that cord blood PCT had a low accuracy for diagnosing early onset neonatal sepsis in Sub Saharan African neonates, while association of clinical criterion showed to be more accurate than any biomarkers taken independently. At birth, CD74, either associated with IP-10 or clinical criterion, had the best accuracy in prognosing sepsis mortality.Trial registration Clinicaltrial.gov registration number: NCT03780712. Registered 19 December 2018. Retrospectively registered
Regulatory T cell homing and activation is a signature of neonatal sepsis
Regulatory T cells (Treg) play a prominent role in utero tolerating non-inherited maternal antigens and in regulating immune responses against pathogens at birth. This study investigates Treg immunity in newborns in West Africa, where sepsis remains a major public health problem. Treg phenotypes on neonates subgroups with early-onset sepsis (EOS), presumed sepsis, and healthy newborn with and without prenatal risk factors were evaluated. Treg phenotypes varied according to prenatal conditions, with increase in Treg frequency and Foxp3 expression in healthy newborns with prenatal risk factors compared to those with none risk. Compared to healthy newborns with prenatal risk factors, EOS neonates had a significantly reduced frequency of Treg and Foxp3 expression. In the Treg pool, higher frequency of activated Treg was observed in EOS neonates, suggesting an in-utero activation upstream of the sepsis onset. Their migration to the infection site may explain the reduced frequency of circulating Integrin α4β1+ Treg suggestive of homing to the endothelial tissue. EOS neonates show increases expression of CTLA-4, PD-1 and CD39 on Treg, which negatively regulate the activation of effector T cells (Teff) corroborating by the lower frequency of Teff in EOS neonates. The higher frequency of CD39+ Treg and the lower frequency of integrinα4β1+ Treg in EOS non-survivor suggests that Treg exhaustement and endothelial homing are associated with outcome severity. Neonates developing EOS are born with an altered Treg phenotypic profile. Treg expression of CTLA-4, PD-1, CD39, and integrinα4β1 cell markers can be considered as early warning or diagnostic markers of EOS
Elevated plasma interleukin-8 as a risk factor for mortality in children presenting with cerebral malaria
International audienceAbstract Background Cerebral malaria (CM) is a neuropathology which remains one of the deadliest forms of malaria among African children. The kinetics of the pathophysiological mechanisms leading to neuroinflammation and the death or survival of patients during CM are still poorly understood. The increasing production of cytokines, chemokines and other actors of the inflammatory and oxidative response by various local actors in response to neuroinflammation plays a major role during CM, participating in both the amplification of the neuroinflammation phenomenon and its resolution. In this study, we aimed to identify risk factors for CM death among specific variables of inflammatory and oxidative responses to improve our understanding of CM pathogenesis. Methods Children presenting with CM ( n = 70) due to P. falciparum infection were included in southern Benin and divided according to the clinical outcome into 50 children who survived and 20 who died. Clinical examination was complemented by fundoscopic examination and extensive blood biochemical analysis associated with molecular diagnosis by multiplex PCR targeting 14 pathogens in the patients’ cerebrospinal fluid to rule out coinfections. Luminex technology and enzyme immunoassay kits were used to measure 17 plasma and 7 urinary biomarker levels, respectively. Data were analysed by univariate analysis using the nonparametric Mann‒Whitney U test and Pearson’s Chi2 test. Adjusted and multivariate analyses were conducted separately for plasma and urinary biomarkers to identify CM mortality risk factors. Results Univariate analysis revealed higher plasma levels of tumour necrosis factor (TNF), interleukin-1beta (IL-1β), IL-10, IL-8, C-X-C motif chemokine ligand 9 (CXCL9), granzyme B, and angiopoietin-2 and lower urinary levels of prostanglandine E2 metabolite (PGEM) in children who died compared to those who survived CM (Mann–Whitney U -test, P -values between 0.03 and < 0.0001). The multivariate logistic analysis highlighted elevated plasma levels of IL-8 as the main risk factor for death during CM (adjusted odd ratio = 14.2, P -value = 0.002). Values obtained during follow-up at D3 and D30 revealed immune factors associated with disease resolution, including plasma CXCL5, C–C motif chemokine ligand 17 (CCL17), CCL22, and urinary 15-F2t-isoprostane. Conclusions The main risk factor of death during CM was thus elevated plasma levels of IL-8 at inclusion. Follow-up of patients until D30 revealed marker profiles of disease aggravation and resolution for markers implicated in neutrophil activation, endothelium activation and damage, inflammatory and oxidative response. These results provide important insight into our understanding of CM pathogenesis and clinical outcome and may have important therapeutic implications. Graphical Abstrac