1,443 research outputs found

    The experience of sexual desire : an empirial-phenomenological investigation

    Get PDF
    Previous efforts to investigate sexual desire have been hampered by inadequate concern for the phenomena\u27s largely personal nature. In this qualitative study sixteen participants were interviewed who provided detailed descriptions of their experiences of sexual desire. Protocols were prepared and analyzed, individually by the primary researcher and in a group setting by The University of Tennessee Phenomenology Interpretive Group. A thematic structure with one global theme, several lesser themes, and some notable departures from exiting notions of sexual desire emerged. Virtually all participants found it necessary to describe two kinds of experiences: lust and love, and they showed a strong tendency to associate sexual desire with love. They often acknowledged, for example, that although they might experience lust in regard to a physically attractive person, they did not desire them. Other themes included the role of the body in sexual desire, changes in awareness, and changes in the experience over time, which most participants referred to as maturity. Few gender differences were noted; male and female participants produced quite similar descriptions of sexual desire

    Figures of merit and constraints from testing General Relativity using the latest cosmological data sets including refined COSMOS 3D weak lensing

    Full text link
    We use cosmological constraints from current data sets and a figure of merit (FoM) approach to probe any deviations from general relativity (GR) at cosmological scales. The FoM approach is used to study the constraining power of various combinations of data sets on modified gravity (MG) parameters. We use recently refined HST-COSMOS weak-lensing tomography data, ISW-galaxy cross correlations from 2MASS and SDSS LRG surveys, matter power spectrum from SDSS-DR7 (MPK), WMAP7 temperature and polarization spectra, BAO from 2DF and SDSS-DR7, and Union2 compilation of supernovae, in addition to other bounds from H_0 measurements and BBN. We use 3 parametrizations of MG parameters that enter the perturbed field equations. In order to allow for variations with redshift and scale, the first 2 parametrizations use recently suggested functional forms while the third is based on binning methods. Using the first parametrization, we find that CMB + ISW + WL provides the strongest constraints on MG parameters followed by CMB+WL or CMB+MPK+ISW. Using the second parametrization or binning methods, CMB+MPK+ISW consistently provides some of the strongest constraints. This shows that the constraints are parametrization dependent. We find that adding up current data sets does not improve consistently uncertainties on MG parameters due to tensions between best-fit MG parameters preferred by different data sets. Furthermore, some functional forms imposed by the parametrizations can lead to an exacerbation of these tensions. Next, unlike some studies that used the CFHTLS lensing data, we do not find any deviation from GR using the refined HST-COSMOS data, confirming previous claims in those studies that their result may have been due to some systematic effect. Finally, we find in all cases that the values corresponding to GR are within the 95% confidence level contours for all data set combinations. (abridged)Comment: 18 pages, 6 figures, matches version published in PR

    The effect of surface treatment on delamination for a nylon interleaving material

    Full text link
    One method of controlling delamination and increasing the inter-lamina toughness in composite laminates is the use of thermoplastic interleaving films, primarily to absorb energy. In this study the effect of controlling the surface energy of a nylon interleaving film on the interlaminar fracture toughness was investigated. It was found that as the surface energy of the nylon increased so did the Mode I delamination resistance. Surface energy was measured via dynamic contact angle measurements and delamination resistance via double cantilever beam specimens. It was concluded that control of the surface energy of the interleaving material is paramount in controlling delamination. © Institute of Materials Engineering Australasia Ltd

    First observation of Bs0 → D*s2+Xμ-ν decays

    Get PDF
    Using data collected with the LHCb detector in proton–proton collisions at a centre-of-mass energy of 7 TeV, the semileptonic decays B0s→D+sXμ−ν and B0s→D0K+Xμ−ν are detected. Two structures are observed in the D0K+ mass spectrum at masses consistent with the known Ds1(2536)+ and D∗s22573)+ mesons. The measured branching fractions relative to the total B0s semileptonic rate are B(B0s→D∗+s2Xμ−ν)/B(B0s→Xμ−ν) = (3.3±1.0±0.4)%, and B(B0s→D+s1Xμ−ν)/B(B0s→Xμ−ν) = (5.4±1.2±0.5)%, where the first uncertainty is statistical and the second is systematic. This is the first observation of the D∗+s2 state in B0s decays; we also measure its mass and width

    Constraints and tensions in testing general relativity from Planck and CFHTLenS data including intrinsic alignment systematics

    Get PDF
    We present constraints on testing general relativity (GR) at cosmological scales using recent data sets and assess the impact of galaxy intrinsic alignment in the CFHTLenS lensing data on those constraints. We consider data from Planck temperature anisotropies, the galaxy power spectrum from the WiggleZ survey, weak-lensing tomography shear-shear cross-correlations from the CFHTLenS survey, integrated Sachs Wolfe-galaxy cross-correlations, and baryon acoustic oscillation data. We use three different parametrizations of modified gravity (MG), one that is binned in redshift and scale, a parametrization that evolves monotonically in scale but is binned in redshift, and a functional parametrization that evolves only in redshift. We present the results in terms of the MG parameters Q and Sigma. We employ an intrinsic alignment model with an amplitude A(CFHTLenS) that is included in the parameter analysis. We find an improvement in the constraints on the MG parameters corresponding to a 40-53% increase on the figure of merit compared to previous studies, and GR is found consistent with the data at the 95% confidence level. The bounds found on ACFHTLenS are sensitive to the MG parametrization used, and the correlations between ACFHTLenS and MG parameters are found to be weak to moderate. For all three MG parametrizations ACFHTLenS is found to be consistent with zero when the whole lensing sample is used; however, when using the optimized early-type galaxy sample a significantly nonzero A(CFHTLenS) is found for GR and the scale-independent MG parametrization. We find that the tensions observed in previous studies persist, and there is an indication that cosmic microwave background (CMB) data and lensing data prefer different values for MG parameters, particularly for the parameter Sigma. The analysis of the confidence contours and probability distributions suggest that the bimodality found follows that of the known tension in the sigma(8) parameter

    Measurement of the Bs0-Bs0 oscillation frequency δms in Bs0→Ds-(3)π decays

    Get PDF
    The Bs0-Bs0 oscillation frequency δms is measured with 36 pb-1 of data collected in pp collisions at s=7TeV by the LHCb experiment at the Large Hadron Collider. A total of 1381 Bs0→Ds-π+ and Bs0→Ds-π+π-π + signal decays are reconstructed, with average decay time resolutions of 44 fs and 36 fs, respectively. An oscillation signal with a statistical significance of 4.6σ is observed. The measured oscillation frequency is δm s=17.63±0.11(stat)±0.02(syst)ps -1

    Association Between Perifoveal Drusen Burden Determined by OCT and Genetic Risk in Early and Intermediate Age-Related Macular Degeneration

    Get PDF
    Purpose: The purpose of this study was to determine associations between macular drusen parameters derived from an automatic optical coherence tomography (OCT) algorithm, nonadvanced age-related macular degeneration (AMD) stage, and genetic variants. Methods: Eyes classified as early or intermediate AMD with OCT imaging and genetic data were selected (n = 239 eyes). Drusen area and volume measurements were estimated using the Zeiss Cirrus advanced retinal pigment epithelium analysis algorithm in a perifoveal zone centered on the fovea. Associations between drusen measurements and common genetic variants in the complement and high-density lipoprotein (HDL) lipid pathways and the ARMS2/HTRA1 variant were calculated using generalized estimating equations and linear mixed models adjusting for age, sex, smoking, body mass index, and education. Results: Drusen area \u3e /= the median was independently associated with a higher number of risk alleles for CFH risk score and risk variants in C3 and ARMS2/HTRA1 compared with eyes with no measurable drusen. Similar results were obtained for drusen volume. When all genes were analyzed in the same model, only CFH score and ARMS2/HTRA1 were associated with drusen measurements. HDL pathway genes were not significantly related to drusen parameters. Nonadvanced AMD stages were associated with OCT-derived drusen area and volume. Conclusions: Variants in CFH and ARMS2/HTRA1, commonly associated with advanced AMD, were independently associated with an increase in drusen burden determined by OCT in an allele dose dependent manner, in eyes with early and intermediate AMD. Biomarkers such as a quantitative classification of nonadvanced AMD and other OCT-derived subphenotypes could provide earlier anatomic endpoints for clinical trials and facilitate the development of new therapies for AMD

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ''van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented

    First observation of the decay B0s→ϕK∗0

    Get PDF
    The first observation of the decay B0s→ϕK∗0 is reported. The analysis is based on a data sample corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions at s√=7 TeV, collected with the LHCb detector. A yield of 30 ± 6 B0s→(K+K−)(K−π+) decays is found in the mass windows 1012.5 < M (K + K −) < 1026.5 MeV/c 2 and 746 < M(K − π +) < 1046 MeV/c 2. The signal yield is found to be dominated by B0s→ϕK∗0 decays, and the corresponding branching fraction is measured to be B(B0s→ϕK∗0) = (1.10 ± 0.24 (stat) ± 0.14 (syst) ± 0.08 (f d /f s )) × 10−6, where the uncertainties are statistical, systematic and from the ratio of fragmentation fractions f d /f s which accounts for the different production rate of B 0 and B0s mesons. The significance of B0s→ϕK∗0 signal is 6.1 standard deviations. The fraction of longitudinal polarization in B0s→ϕK∗0 decays is found to be f 0 = 0.51 ± 0.15 (stat) ± 0.07 (syst)

    Search for the rare decays B0s→μ+μ− and B0→μ+μ−

    Get PDF
    A search for the decays and B0→μ+μ− is performed with 0.37 fb−1 of pp collisions at collected by the LHCb experiment in 2011. The upper limits on the branching fractions are and B(B0→μ+μ−)<3.6×10−9 at 95% confidence level. A combination of these results with the LHCb limits obtained with the 2010 dataset leads to and B(B0→μ+μ−)<3.2×10−9 at 95% confidence level
    corecore