74 research outputs found

    Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration

    Full text link
    © 2018 Elsevier B.V. Nonwoven carbon nanotube (CNT) laminates were characterized as support-free membranes for water filtration in terms of structural morphology, water permeability, selectivity and chemical resistance. Nominal pore rating (12–23 nm) estimated by rejection of globular proteins and fluorescence beads fall within the selectivity range of tight ultrafiltration (UF) membranes applied for wastewater treatment. The membranes displayed high permeability (120–400 LMH/bar). High selectivity regardless of high permeability seems to be due to tortuosity and pore structure of the membranes (25–50 μm thickness). The chemical stability of the membranes was tested towards common chemicals used for membrane cleaning (HCl, NaOH, NaClO) but at much severe conditions (24 h exposure at 4–10 fold higher concentrations). High resolution-X-ray photoelectron spectroscopy (XPS) was applied to evaluate chemical resistance. The relative C/O-carbon to oxygen ratio and typical deconvolution curves of C1s lines of the membranes after 24 h exposure depicted no significant changes compared to the reference samples, confirming resistance to chemical oxidation. This combination of features, added to simplicity of fabrication and post-synthesis modification and support-free configuration that enhances chemical stability, offer a worthwhile opportunity of application of these dense-array outer-walled CNT membranes in the UF range, especially at harsh conditions such as wastewater treatment

    Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes

    Full text link
    © 2017 Elsevier Ltd This study aimed at evaluating the contribution of low voltage electric field, both alternating (AC) and direct (DC) currents, on the prevention of bacterial attachment and cell inactivation to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage biofilm formation. A mutant strain of Pseudomonas putida S12 was used a model bacterium and either capacitive or resistive electrical circuits and two flow regimes, flow-through and cross-flow filtration, were studied. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. AC voltage at 1.5 V, 1 kHz frequency and wave pulse above offset (+0.45) with 100Ω external resistance on the ground side prevented almost completely attachment of bacteria (>98.5%) with concomitant high inactivation (95.3 ± 2.5%) in flow-through regime. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. Although similar trends were observed, a net reduced extent of prevention of bacterial attachment and inactivation was observed in filtration as compared to flow-through regime, which is mainly attributed to the permeate drag force, also supported by theoretical calculations in DC in capacitive mode. Electrochemical impedance spectroscopy analysis suggests a pure resistor behavior in resistance mode compared to involvement of redox reactions in capacitance mode, as source for bacteria detachment and inactivation. Although further optimization is required, electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration

    Effect of Permeate Drag Force on the Development of a Biofouling Layer in a Pressure-Driven Membrane Separation System▿

    No full text
    The effect of permeate flux on the development of a biofouling layer on cross-flow separation membranes was studied by using a bench-scale system consisting of two replicate 100-molecular-weight-cutoff tubular ultrafiltration membrane modules, one that allowed flow of permeate and one that did not (control). The system was inoculated with Pseudomonas putida S-12 tagged with a red fluorescent protein and was operated using a laminar flow regimen under sterile conditions with a constant feed of diluted (1:75) Luria-Bertani medium. Biofilm development was studied by using field emission scanning electron microscopy and confocal scanning laser microscopy and was subsequently quantified by image analysis, as well as by determining live counts and by permeate flux monitoring. Biofilm development was highly enhanced in the presence of permeate flow, which resulted in the buildup of complex three-dimensional structures on the membrane. Bacterial transport toward the membrane by permeate drag was found to be a mechanism by which cross-flow filtration contributes to the buildup of a biofouling layer that was more dominant than transport of nutrients. Cellular viability was found to be not essential for transport and adhesion under cross-flow conditions, since the permeate drag overcame the effect of bacterial motility
    corecore