3 research outputs found

    Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer

    No full text
    Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC). However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies—IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less (90.07intheU.S.,90.07 in the U.S., 68.69 in Europe) than either independent or parallel testing by both FISH and IHC (441.85intheU.S.and441.85 in the U.S. and 279.46 in Europe). The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies

    Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer

    No full text
    Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC). However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies—IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less (90.07intheU.S.,90.07 in the U.S., 68.69 in Europe) than either independent or parallel testing by both FISH and IHC (441.85intheU.S.and441.85 in the U.S. and 279.46 in Europe). The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies

    An F876l mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (Enzalutamide)

    No full text
    Castration-resistant prostate cancer (CRPC) is the most aggressive, incurable form of prostate cancer. MDV3100 (enzalutamide), an antagonist of the androgen receptor (AR), was approved for clinical use in men with metastatic CRPC. Although this compound showed clinical efficacy, many initial responders later developed resistance. To uncover relevant resistant mechanisms, we developed a model of spontaneous resistance to MDV3100 in LNCaP prostate cancer cells. Detailed characterization revealed that emergence of an F876L mutation in AR correlated with blunted AR response to MDV3100 and sustained proliferation during treatment. Functional studies confirmed that ARF876L confers an antagonist-to-agonist switch that drives phenotypic resistance. Finally, treatment with distinct antiandrogens orcyclin-dependent kinase (CDK)4/6 inhibitors effectively antagonized ARF876L function. Together, these findings suggest that emergence of F876L may (i) serve as a novel biomarker for prediction of drug sensitivity, (ii) predict a "withdrawal" response to MDV3100, and (iii) be suitably targeted with other antiandrogens or CDK4/6 inhibitors. SIGNIFICANCE: We uncovered an F876L agonist-switch mutation in AR that confers genetic and phenotypic resistance to the antiandrogen drug MDV3100. On the basis of this finding, we propose new therapeutic strategies to treat patients with prostate cancer presenting with this AR mutation. © 2013 American Association for Cancer Research
    corecore