23,179 research outputs found

    Final state interaction in D+→K−π+π+D^+\to K^-\pi^+\pi^+ with KπK\pi I=1/2 and 3/2 channels

    Get PDF
    The final state interaction contribution to D+D^+ decays is computed for the K−π+π+K^-\pi^+\pi^+ channel within a light-front relativistic three-body model for the final state interaction. The rescattering process between the kaon and two pions in the decay channel is considered. The off-shell decay amplitude is a solution of a four-dimensional Bethe-Salpeter equation, which is decomposed in a Faddeev form. The projection onto the light-front of the coupled set of integral equations is performed via a quasi-potential approach. The S-wave KπK\pi interaction is introduced in the resonant isospin 1/21/2 and the non-resonant isospin 3/23/2 channels. The numerical solution of the light-front tridimensional inhomogeneous integral equations for the Faddeev components of the decay amplitude is performed perturbatively. The loop-expansion converges fast, and the three-loop contribution can be neglected in respect to the two-loop results for the practical application. The dependence on the model parameters in respect to the input amplitude at the partonic level is exploited and the phase found in the experimental analysis, is fitted with an appropriate choice of the real weights of the isospin components of the partonic amplitude. The data suggests a small mixture of total isospin 5/25/2 to the dominant 3/23/2 one. The modulus of the unsymmetrized decay amplitude, which presents a deep valley and a following increase for KπK\pi masses above 1.51.5 GeV, is fairly reproduced. This suggests the assignment of the quantum numbers 0+0^+ to the isospin 1/2 K∗(1630)K^*(1630) resonance

    Mandioquinha-salsa: manejo cultural.

    Get PDF
    bitstream/item/107364/1/CNPH-MANDIOQ.-SALSA-MANEJ.-CULT.-98-2.pd

    Penning collisions of laser-cooled metastable helium atoms

    Full text link
    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient β\beta on the excited state (23P22^3P_2) and metastable state (23S12^3S_1) populations is also investigated. From these results we infer a rather uniform rate constant Ksp=(1±0.4)×10−7K_{sp}=(1{\pm}0.4)\times10^{-7} cm3^3/s.Comment: 8 pages, 9 figures, Revte
    • …
    corecore