7 research outputs found

    The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus

    No full text
    The molecular properties and orientation of the cGMP-gated cation channel of bovine rod outer segment membranes were studied using biochemical and immunochemical methods. Western blots labeled with anti-channel monoclonal antibodies indicate that the channel has a subunit Mr of 63,000 in bovine rod outer segment membranes prepared in the presence and absence of protease inhibitors and in rod outer segments from other mammalian retinas. The channel has an apparent Mr of 78,000 in both COS-1 cells and Xenopus oocytes expressing the cloned cDNA. NH2-terminal sequence analysis indicates that the lower Mr of the channel in rod outer segments is caused by the absence of the first 92 amino acids predicted by cDNA sequence analysis. Immunofluorescent and immunogold labeling has confirmed that the 63,000 form of the channel is present in rod outer segments. These results indicate that photoreceptor cell-specific co-translational or post-translational cleavage of the NH2-terminal segment of the channel occurs prior or during the incorporation of the channel into the rod outer segment plasma membrane. Immunogold labeling studies using site-directed antibodies also indicate that the NH2-terminal segment of the rod outer segment channel is exposed on the cytoplasmic side of the plasma membrane

    Intermolecular Autophosphorylation Regulates Myosin IIIa Activity and Localization in Parallel Actin Bundles*

    No full text
    Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A

    Myo3A, One of Two Class III Myosin Genes Expressed in Vertebrate Retina, Is Localized to the Calycal Processes of Rod and Cone Photoreceptors and Is Expressed in the Sacculus

    No full text
    The striped bass has two retina-expressed class III myosin genes, each composed of a kinase, motor, and tail domain. We report the cloning, sequence analysis, and expression patterns of the long (Myo3A) and short (Myo3B) class III myosins, as well as cellular localization and biochemical characterization of the long isoform, Myo3A. Myo3A (209 kDa) is expressed in the retina, brain, testis, and sacculus, and Myo3B (155 kDa) is expressed in the retina, intestine, and testis. The tails of these two isoforms contain two highly conserved domains, 3THDI and 3THDII. Whereas Myo3B has three IQ motifs, Myo3A has nine IQ motifs, four in its neck and five in its tail domain. Myo3A localizes to actin filament bundles of photoreceptors and is concentrated in the calycal processes. An anti-Myo3A antibody decorates the actin cytoskeleton of rod inner/outer segments, and this labeling is reduced by the presence of ATP. The ATP-sensitive actin association is a feature characteristic of myosin motors. The numerous IQ motifs may play a structural or signaling role in the Myo3A, and its localization to calycal processes indicates that this myosin mediates a local function at this site in vertebrate photoreceptors

    Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project

    No full text
    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor–binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor–binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome

    PDA (Prolonged Depolarizing Afterpotential)–Defective Mutants: The Story of nina's

    No full text
    corecore