5 research outputs found

    The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation

    Get PDF
    Human mutations in the cardiac transcription factor gene TBX5 cause Congenital Heart Disease (CHD), however the underlying mechanism is unknown. We report characterization of the endogenous TBX5 cardiac interactome and demonstrate that TBX5, long considered a transcriptional activator, interacts biochemically and genetically with the Nucleosome Remodeling and Deacetylase (NuRD) repressor complex. Incompatible gene programs are repressed by TBX5 in the developing heart. CHD missense mutations that disrupt the TBX5-NuRD interaction cause depression of a subset of repressed genes. Furthermore, the TBX5-NuRD interaction is required for heart development. Phylogenetic analysis showed that the TBX5-NuRD interaction domain evolved during early diversification of vertebrates, simultaneous with the evolution of cardiac septation. Collectively, this work defines a TBX5-NuRD interaction essential to cardiac development and the evolution of the mammalian heart, and when altered may contribute to human CHD

    Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development

    Get PDF
    Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields

    CASZ1 Promotes Vascular Assembly and Morphogenesis through the Direct Regulation of an EGFL7/RhoA-Mediated Pathway

    Get PDF
    The formation of the vascular system is essential for embryonic development and homeostasis. However, transcriptional control of this process is not fully understood. Here we report an evolutionarily conserved role for the transcription factor CASZ1 in blood vessel assembly and morphogenesis. In the absence of CASZ1, Xenopus embryos fail to develop a branched and lumenized vascular system, and CASZ1-depleted human endothelial cells display dramatic alterations in adhesion, morphology, and sprouting. Mechanistically, we show CASZ1 directly regulates Epidermal Growth Factor-Like Domain 7 (Egfl7). We further demonstrate that defects of CASZ1 or EGFL7-depleted cells are in part due to diminished RhoA expression and impaired focal adhesion localization. Moreover, these abnormal endothelial cell behaviors in CASZ1-depleted cells can be rescued by restoration of Egfl7. Collectively, these studies show CASZ1 is required to directly regulate a unique EGFL7/RhoA-mediated pathway to promote vertebrate vascular development
    corecore