9 research outputs found
Coupled Cavity Mid-IR Quantum Cascade Lasers Fabricated by Dry Etching
In this work, two-section, coupled cavity, mid-IR quantum cascade lasers (QCLs) were characterized in terms of their tuning range and emission stability under operation towards potential application in detection systems. Devices were processed by inductively coupled plasma reactive ion etching (ICP-RIE) from InP-based heterostructure, designed for emission in the 9.x micrometer range. Single mode devices were demonstrated with a better than 20 dB side mode suppression ratio (SMRS). The fabrication method resulted in improved yield, as well as high repeatability of individual devices. Continuous, mode-hop-free tuning of emission wavelength was observed across ~4.5 cm−1 for the range of temperatures of the heat sink from 15 °C to 70 °C. Using the thermal perturbation in the lasing cavity, in conjunction with controlled hopping between coupled-cavity (CC) modes, we were able to accomplish tuning over the range of up to ~20 cm−1
Monolithic, Optically Coupled, Multi-Section Mid-IR Quantum Cascade Lasers
Mid-infrared (mid-IR λ ≈ 3–12 μm), single-mode-emission Quantum Cascade Lasers (QCLs) are of significant interest for a wide range of applications, especially as the laser sources are chosen for laser absorption spectroscopy. In this work, we present the design, fabrication and characterization of multi-section, coupled-cavity, mid-IR quantum cascade lasers. The purpose of this work is to propose a design modification for a coupled-cavity device, yielding a single-mode emission with a longer range of continuous tuning during the pulse, in contrast to a 2-section device. This effect was obtained and demonstrated in the work. The proposed design of a 3-section coupled-cavity QCL allows for a single-mode emission with 35 dB side-mode suppression ratio. Additionally, the time-resolved spectra of the wavelength shift during pulse operation, show a continuous tuning of ~3 cm−1 during the 2 μs pulse. The devices were fabricated in a slightly modified, standard laser process using dry etching
Monolithic, Optically Coupled, Multi-Section Mid-IR Quantum Cascade Lasers
Mid-infrared (mid-IR λ ≈ 3–12 μm), single-mode-emission Quantum Cascade Lasers (QCLs) are of significant interest for a wide range of applications, especially as the laser sources are chosen for laser absorption spectroscopy. In this work, we present the design, fabrication and characterization of multi-section, coupled-cavity, mid-IR quantum cascade lasers. The purpose of this work is to propose a design modification for a coupled-cavity device, yielding a single-mode emission with a longer range of continuous tuning during the pulse, in contrast to a 2-section device. This effect was obtained and demonstrated in the work. The proposed design of a 3-section coupled-cavity QCL allows for a single-mode emission with 35 dB side-mode suppression ratio. Additionally, the time-resolved spectra of the wavelength shift during pulse operation, show a continuous tuning of ~3 cm−1 during the 2 μs pulse. The devices were fabricated in a slightly modified, standard laser process using dry etching
In-Depth Experimental Analysis of Influence of Electroplated Gold Thickness on Thermal and Electro-Optical Properties of mid-IR AlInAs/InGaAs/InP Quantum Cascade Lasers
In this paper, we have examined the influence of electroplated gold thickness on the thermal and electro-optical properties of mid-IR AlInAs/InGaAs, InP QCLs. The experimental results show a significant reduction of the temperature of QCL active region (AR) with increasing gold layer thickness. For QCLs with 5.0 μm gold thickness, we observed a 50% reduction of the active region temperature. An improvement of key electro-optical parameters, that is, threshold current density and maximum emitted power for structures with thick gold, was observed. The results of micro-Raman characterization show that the electroplated gold layer introduces only moderate compressive strain in top InP cladding, which is well below the critical value for the creation of misfit dislocations
Optimization of MBE Growth Conditions of In<sub>0.52</sub>Al<sub>0.48</sub>As Waveguide Layers for InGaAs/InAlAs/InP Quantum Cascade Lasers
We investigate molecular beam epitaxy (MBE) growth conditions of micrometers-thick In0.52Al0.48As designed for waveguide of InGaAs/InAlAs/InP quantum cascade lasers. The effects of growth temperature and V/III ratio on the surface morphology and defect structure were studied. The growth conditions which were developed for the growth of cascaded In0.53Ga0.47As/In0.52Al0.48As active region, e.g., growth temperature of Tg = 520 °C and V/III ratio of 12, turned out to be not optimum for the growth of thick In0.52Al0.48As waveguide layers. It has been observed that, after exceeding ~1 µm thickness, the quality of In0.52Al0.48As layers deteriorates. The in-situ optical reflectometry showed increasing surface roughness caused by defect forming, which was further confirmed by high resolution X-ray reciprocal space mapping, optical microscopy and atomic force microscopy. The presented optimization of growth conditions of In0.52Al0.48As waveguide layer led to the growth of defect free material, with good optical quality. This has been achieved by decreasing the growth temperature to Tg = 480 °C with appropriate increasing V/III ratio. At the same time, the growth conditions of the cascade active region of the laser were left unchanged. The lasers grown using new recipes have shown lower threshold currents and improved slope efficiency. We relate this performance improvement to reduction of the electron scattering on the interface roughness and decreased waveguide absorption losses
Heat Dissipation Schemes in AlInAs/InGaAs/InP Quantum Cascade Lasers Monitored by CCD Thermoreflectance
In this paper, we report on the experimental investigation of the thermal performance of lattice matched AlInAs/InGaAs/InP quantum cascade lasers. Investigated designs include double trench, single mesa, and buried heterostructures, which were grown by combined Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) techniques. The thermal characteristics of lasers are investigated by Charge-Coupled Device CCD thermoreflectance. This method allows for the fast and accurate registration of high-resolution temperature maps of the whole device. We observe different heat dissipation mechanisms for investigated geometries of Quantum Cascade Lasers (QCLs). From the thermal point of view, the preferred design is the buried heterostructure. The buried heterostructures structure and epi-layer down mounting help dissipate the heat generated from active core of the QCL. The experimental results are in very good agreement with theoretical predictions of heat dissipation in various device constructions