9 research outputs found

    The Antibacterial Properties of Polish Honey against <i>Streptococcus mutans</i>—A Causative Agent of Dental Caries

    No full text
    Streptococcus mutans is considered the main pathogen responsible for dental caries, one of the major infectious diseases, affecting more than 4 billion people worldwide. Honey is a natural product with well-known antibacterial potential against several human pathogens. The aim of the study was to evaluate the antibacterial efficacy of Polish honey against S. mutans and analyze the role of some bioactive substances on its antibacterial action. The antibacterial potential of different honey varieties (goldenrod, buckwheat, honeydew, and lime) was analyzed using a microdilution assay. Manuka and artificial honey were used as controls. The content of GOX, hydrogen peroxide, total polyphenols, and antioxidant potential was assayed in honey. The influence of catalase and proteinase K on antibacterial activity as well as antibiofilm action was also determined. The strongest antibacterial activity was observed for buckwheat, honeydew, and manuka honey, which were also characterized by the highest antioxidant activity and polyphenols content. Catalase treatment decreases the antibacterial activity of honey, while proteinase K treatment influences the antibacterial potential of honey slightly less. Obtained results suggest that honey can be a good natural product against S. mutans, and hydrogen peroxide was identified as a crucial contributor to its antimicrobial action

    Antioxidant Activity as Biomarker of Honey Variety

    No full text
    Honey variety is commonly defined by beekeepers based on nectar flow availability and the only laboratory method to provide verification is the melissopalynological analysis. Therefore, a quick and simple method for accurate assessment of honey variety is still being researched. The aim of the study was to evaluate the antioxidant activity of honey as an indicator of variety through the use of multivariate statistical analysis. Materials for the study consisted of 90 samples of varietal Polish honeys (rape-12, tilia-10, goldenrod-11, dandelion-5, buckwheat-6, multifloral-17, nectar-honeydew-8 and coniferous honeydew-16 and leafy honeydew-5) obtained directly from apiaries. Honeys were investigated in aspect of antioxidant capacity by photochemiluminescence (PCL) methods using standard ACW and ACL kits. As the reference FRAP and DPPH methods were used. The total phenolics content (TPC) was determined through the Folin-Ciocalteu method. The strongest antioxidant activity was found for buckwheat, while the weakest was found for rape honeys regardless of the used method. Results of the used methods were positively correlated (r = 0.42 to 0.94). Analysis conducted by PCL method confirmed that the minor fraction of honey antioxidants exhibits hydrophobic properties. Clear separation of honey varieties using PCA and Clustering method indicate that antioxidant activity can be a useful parameter for determining the botanical origin of honey

    Antiviral and Antibacterial Effect of Honey Enriched with <i>Rubus</i> spp. as a Functional Food with Enhanced Antioxidant Properties

    No full text
    The aim of this study was to investigate the effect of blackberry and raspberry fruits (1 and 4%) and leaves (0.5 and 1%) on the biological activities of rape honey. Honey and plant material extracts were analyzed regarding total phenolic, flavonoid, anthocyanin contents, HPTLC and HPLC polyphenol profiles, as well as antioxidant activity. The antiviral potential was analyzed against bacteriophage phi 6—a coronavirus surrogate—whereas antimicrobial was tested against S. aureus and E. coli. Blackberry extracts were more abundant in antioxidants than raspberry extracts, with better properties found for leaves than fruits and for cultivated rather than commercial plants. The addition of both Rubus plant additives significantly increased the antioxidant potential of honey by four-fold (for 4% fruits additive) to five-fold (for 1% of leaves). Honey with the addition of fruits possessed higher antiviral potential compared with raw rape honey (the highest for 4% of raspberry fruit and 1% of blackberry leaf additive). Honey enriched with Rubus materials showed higher antibacterial potential against S. aureus than rape honey and effectively inhibited S. aureus biofilm formation. To summarize, honey enriched with Rubus fruit or leaves are characterized by increased pro-health value and can be recommended as a novel functional food

    Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers

    No full text
    Juglans regia L., walnut, is a large, long-living tree, cultivated in temperate climates around the world. It is highly appreciated for its nutritional kernels and high-quality timber. Its barks, leaves, and husk are used as dyes and in folk medicine as herbal remedies for several diseases. From a biological and chemical standpoint, relatively little is known about the male flowers of the tree. Therefore, the aim of the study was to evaluate the phenolic profile as well as in vitro antioxidant, antimicrobial, and antiproliferative activity of male Juglans regia L. flowers. Phenolic content was determined by UPLC/PDA/MS/MS analyses; antioxidant activity was assessed by five different methods; antimicrobial activity was evaluated against the six most common pathogenic strains of Gram-positive and Gram-negative bacteria, and antiproliferative properties were assessed against six cell lines. Most of the analyses carried out in this study were performed for the first time for this raw material. J. regia flower extract was characterized by a strong ability to scavenge DPPH&#729; free radicals, hydroxyl radicals, and chelating metal ions. Among the examined bacterial strains and neoplastic lines, the strongest antimicrobial activity was shown against S. aureus, L. monocytogenes, and B. cereus, and cytotoxic activity against breast cancer, glioblastoma, and astrocytoma cells. Male J. regia flowers have also been found to be a rich source of phenolic compounds. The content of polyphenols in the extract was 4369.73 mg/100 g d.w., and 24 compounds from the group of flavonoids, phenolic acids, and juglunosides were identified. Additionally, a strong correlation between the content of polyphenols and the antioxidant capacity and cytotoxic activity was observed. This is why the tested J. regia flowers are an excellent source of effective natural antioxidant, antibacterial, and chemopreventive compounds that have potential to be used in the pharmaceutical or food industries

    Antioxidant Activity, Polyphenolic Profiles and Antibacterial Properties of Leaf Extract of Various Paulownia spp. Clones

    No full text
    Paulownia spp. are widely distributed ornamental trees with leaves abundant in secondary metabolites of high medicinal potential. Eighteen breeding clones of Paulownia spp. were tested in terms of their antioxidant activity and total polyphenolic contents. The 50% ethanolic extracts (2 g/30 mL) of leaves and petioles were compared in the screening step. Eight paulownia clones were selected for detailed analyses including HPTLC polyphenolic profile, verbascoside content and antibacterial activity against five bacteria species (S. aureus, B. cereus, E. coli, Y. enterocolitica, S. enterica). The species-specific differences in terms of antioxidant activity correlated with phenolic compounds were found mainly in the case of leaf blade extracts, the highest for P. tomentosa × P. fortunei and the lowest for P. elongata × P. fortunei clones. The P. tomentosa clones varied greatly in this regard. In the HPTLC polyphenolic profile, the occurrence of some polyphenols was proved and the specific verbascoside content was quantified (70 to 225 mg/g DW). The P. tomentosa × P. fortunei hybrids had the highest inhibitory activity, mainly against Gram-positive bacteria, whereas only slight inhibition of S. aureus growth was observed for P. elongata × P. fortunei clones. The obtained results indicate diverse suitability of paulownia clones as a source of active ingredients

    Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione.

    No full text
    The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore