20 research outputs found

    Vector-borne parasites in dogs from Ukraine translocated to Poland following Russian invasion in 2022

    Get PDF
    Introduction: Since 24 February 2022, the day the Russian aggression against Ukraine began, millions of refugees and thousands of pets crossed the Polish-Ukrainian border. Additionally, an unknown number of shelter and stray dogs and cats were rescued and translocated to Poland by private persons and non-profit organizations. The aim of the present study was to examine rescued dogs and cats for presence of canine vector-borne parasites to determine the role of armed conflict in spreading these parasites

    Candidatus Neoehrlichia mikurensis and Hepatozoon sp. in voles (Microtus spp.): occurrence and evidence for vertical transmission

    Get PDF
    Candidatus Neoehrlichia mikurensis (CNM) and Hepatozoon spp. are important vector-borne parasites of humans and animals. CNM is a relatively recently discovered pathogen of humans. Hepatozoon are parasites of reptiles, amphibians and mammals, commonly found in rodents and carnivores worldwide. The present study aimed to determine the prevalence of CNM and Hepatozoon spp. in three species of Microtus and to assess the occurrence of vertical transmission in naturally-infected voles. Molecular techniques were used to detect pathogen DNA in blood and tissue samples of captured voles and their offspring. The prevalence of CNM in the vole community ranged 24–47% depending on Microtus species. The DNA of CNM was detected in 21% of pups from three litters of six infected Microtus dams (two Microtus arvalis and one M. oeconomus) and in 3/45 embryos (6.6%) from two litters of eight CNM-infected pregnant females. We detected Hepatozoon infection in 14% of M. arvalis and 9% of M. oeconomus voles. Hepatozoon sp. DNA was detected in 48.7% of pups from seven litters (6 M. arvalis and 1 M. oeconomus) and in two embryos (14.3%) obtained from one M. arvalis litter. The high prevalence of CNM infections in the Microtus spp. community may be a result of a relatively high rate of vertical transmission among naturally infected voles. Vertical transmission was also demonstrated for Hepatozoon sp. in M. arvalis and M. oeconomus. Our study underlines the significance of alternative routes of transmission of important vector-borne pathogens

    Babesiosis in Southeastern, Central and Northeastern Europe: An Emerging and Re-Emerging Tick-Borne Disease of Humans and Animals

    Full text link
    There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a “One Health” approach

    Parasitic nematodes of the genus Syphacia Seurat, 1916 infecting Cricetidae in the British Isles: The enigmatic status of Syphacia nigeriana

    Get PDF
    Oxyurid nematodes (Syphacia spp.) from bank (Myodes glareolus) and field/common (Microtus spp.) voles, from disparate geographical sites in the British Isles, were examined morphologically and genetically. The genetic signatures of 118 new isolates are provided, based primarily on the rDNA internal transcribed spacers (ITS1-5.8S-ITS2) region and for representative isolates also on the small subunit 18S rDNA region and cytochrome c oxidase subunit 1 (cox-1) gene locus. Genetic data on worms recovered from Microtus spp. from the European mainland and from other rodent genera from the Palaearctic, North America and West Africa are also included. We test historical hypotheses indicating that S. nigeriana is a generalist species, infecting a range of different rodent genera. Our results establish that S. nigeriana is a parasite of both bank and field voles in the British Isles. An identical genotype was also recorded from Hubert's multimammate mouse (Mastomys huberti) from Senegal, but Mastomys spp. from West Africa were additionally parasitized by a related, although genetically distinct Syphacia species. We found no evidence for S. petrusewiczi in voles from the British Isles but isolates from Russia and North America were genetically distinct and formed their own separate deep branch in maximum likelihood molecular phylogenetic trees

    Occurrence of Dirofilaria repens in wild carnivores in Poland.

    Get PDF
    Dirofilaria repens is an expanding vector-borne zoonotic parasite of canines and other carnivores. Sub-clinically infected dogs constitute the most important reservoir of the parasite and the source of infection for its mosquito vectors. However, occurrence of D. repens infection in wild animals may contribute to the transmission of the parasite to humans and may explain the endemicity of filariae in newly invaded regions. The aim of the current study was to determine the occurrence of D. repens in 511 blood and spleen samples from seven species of wild carnivores (wolves, red foxes, Eurasian badgers, raccoons, raccoon dogs, stone martens, and pine martens) from different regions of Poland by means of a PCR protocol targeting the 12S rDNA gene. Dirofilaria repens–positive hosts were identified in seven of fourteen voivodeships in four of the seven regions of Poland: Masovia, Lesser Poland, Pomerania and Warmia-Masuria. The highest prevalence was found in Masovia region (8%), coinciding with the highest previously recorded prevalence in dogs in Central Poland. The DNA of Dirofilaria was detected in 16 samples of three species (total prevalence 3.13%). A low and similar percentage of positive samples (1.9%, 4.2% and 4.8%) was recorded among badgers, red foxes, and wolves, respectively. Dirofilaria repens–positive hosts were identified in seven of fourteen voivodships. Based on detection in different voivodeships, D. repens–positive animals were recorded in four out of the seven regions of Poland: in Masovia, Lesser Poland, Pomerania, and Warmia-Masuria. The highest prevalence of filariae was found in Masovia region (8%), reflecting the highest previously recorded prevalence in dogs (12–50%) in Central Poland. In summary, we conducted the first comprehensive study on the epidemiology of D. repens in seven species of wild hosts in all seven regions of Poland and identified the first case of D. repens infection in Eurasian badgers in Poland and the second in Europe

    Parasites in urban environment

    No full text
    Urbanizacja jest procesem silnie wpływającym na wiele gatunków roślin i zwierząt, przyczyniając się głównie do zmniejszenia bioróżnorodności. W wyniku intensywnej działalności ludzkiej dochodzi do degradacji i niszczenia naturalnych siedlisk. Ciągłe rozrastanie się terenów zurbanizowanych skutkuje ekspansją gatunków na obszary miejskie. Proces ten, zwany synurbizacją, polega na dostosowaniu się gatunku do specyficznych warunków panujących na obszarach miejskich. Miasto to również siedlisko wielu gatunków pasożytów, które pojawiają się na obszarach miast wraz ze swoimi żywicielami. Głównym czynnikiem warunkującym występowanie pasożytów w środowisku miejskim jest ich tolerancja na wiele rodzajów i poziom zanieczyszczeń, dostępność żywicieli, zarówno pośrednich, jak ostatecznych i efektywność transmisji między formami inwazyjnymi a żywicielami. Przedstawiony artykuł dotyczy głównie obszarów miejskich strefy klimatu umiarkowanego.Urbanization is a process exerting high impact on many plant and animal species, causing mainly decrease of biodiversity. As a result of intensive human activity, there occur degradation and devastation of natural habitats. Constant sprawl of urban areas leads to expansion of these species into cities. This process, known as synurbization, consists of adjustment of a species to specific conditions of the urban environment. Cities also pose a challenge to parasites, which appear on the outskirts of cities, accompanying their hosts. The key factor determining occurrence of parasites in the urban environment is their tolerance to many kinds and high levels of pollution, as well as transmission efficiency and availability of both intermediate and final hosts. This paper concerns mainly urban areas of temperate climate

    Molecular study of transovarial transmission of Babesia canis in the Dermacentor reticulatus tick

    No full text
    The Dermacentor reticulatus tick is a main vector of Babesia canis in Europe. The risk of canine babesiosis is unpredictable, due to significant differences in the prevalence of B. canis between ticks originating from closely situated regions. This phenomenon may be explained by vertical transmission of the pathogen in a vector population. Thus, molecular techniques were applied to investigate the occurrence of transovarial transmission in D. reticulatus ticks. DNA of B. canis was detected in 20.7% (6/29) of engorged female ticks collected from dogs, in every pool of eggs laid by positive females (100%, 6/6) and in larvae hatched from these eggs. In the pools of eggs collected from two positive females (2/6; 33.3%), no larvae hatched and no embryos were observed inside the eggs. Conclusions. Transovarial transmission of B. canis can be an important mechanism supporting maintenance of the pathogen in the environment without the presence of a reservoir vertebrate host. However, the efficiency of transovarial transmission in the maintenance of B. canis in natural conditions requires further field research

    The Efficiency of Live-Capture Traps for the Study of Red Fox (Vulpes vulpes) Cubs: A Three-Year Study in Poland

    No full text
    Safe and efficient techniques for the live capture of carnivores are limited. In this study, we identified some of the factors that could affect the success of capturing red fox cubs with live capture traps (also known as cage traps). During a three-year period, we analysed 32 captures of 25 fox cubs (1.3 captures/fox). We assessed the impact of the following factors: sex of animals, month of trapping, weather conditions recorded for each trap-night, the willingness of cubs to explore and enter cage traps, the researchers’ activity around den complexes before trapping and distances to the nearest village or farm. The overall trap rate (32 captures, including recaptured cubs) and the trap rate for individual cubs (25 captures) was 11.2 cubs/100 trap-nights and 8.7/100 trap-nights, respectively. Animals other than foxes were captured only three times, thus the selectivity of the cage-trapping method was high (32/35 = 91.4%). The probability of capturing one cub per night was 70.2% (32 cubs/47 nights). Cubs inhabiting dens in the vicinity of human settlements were less likely to explore and enter traps. Vixens were more likely to relocate their litters if the activity of the staff setting the traps was intense at the trapping site. The success of trapping was higher during poor weather as, for example, during rain or thunderstorms. None of the trapped animals suffered any injuries. Whereas cage trapping can be an effective and safe capture method for juvenile foxes, capture efficiency is affected by the experience of the trappers and a range of other factors including weather and distance to human settlements

    Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success

    No full text
    Abstract Background Bartonella spp. cause persistent bacterial infections in mammals. Although these bacteria are transmitted by blood-feeding arthropods, there is also evidence for vertical transmission in their mammalian hosts. We aimed to determine: (i) the prevalence and diversity of Bartonella spp. in a Microtus spp. community; (ii) whether vertical transmission occurs from infected female voles to their offspring; (iii) the effect of concurrent Babesia microti infection on the success of vertical transmission of Bartonella; and (iv) the impact of congenital infection on pup survival. Results We sampled 124 Microtus arvalis, 76 Microtus oeconomus and 17 Microtus agrestis. In total, 115 embryos were isolated from 21 pregnant females. In the following year 11 pregnant females were kept until they had given birth and weaned their pups (n = 62). Blood smears and PCR targeting the Bartonella-specific rpoB gene fragment (333bp) were used for the detection of Bartonella. Bartonella DNA was detected in 66.8% (145/217) of the wild-caught voles. Bartonella infection was detected in 81.8% (36/44) of pregnant female voles. Bartonella-positive individuals were identified among the embryos (47.1%; 40/85) and in 54.8% (34/62) of pups. Congenitally acquired Bartonella infections and co-infection with B. microti had no impact on the survival of pups over a 3-week period post partum. Among 113 Bartonella sequences, four species were detected: Bartonella taylorii, Bartonella grahamii, Bartonella doshiae and a Bartonella rochalimae-like genotype. Bartonella taylorii clade B was the dominant species in wild-caught voles (49%), pregnant females (47%), their embryos (85%), dams (75%) and pups (95%). Conclusions High prevalence of Bartonella spp. infection maintained in Microtus spp. community is followed by a high rate of vertical transmission of several rodent species of Bartonella in three species of naturally infected voles, M. arvalis, M. oeconomus and M. agrestis. Congenitally acquired Bartonella infection does not affect the survival of pups. Co-infection with B. microti does not affect the effectiveness of the vertical transmission of Bartonella in voles. Bartonella taylorii clade B was found to be the dominant species in wild-caught voles, including pregnant females and dams, and in their offspring, and was also found to be the most successful in vertical transmission

    Candidatus Neoehrlichia mikurensis and Hepatozoon sp. in voles (Microtus spp.): occurrence and evidence for vertical transmission

    No full text
    Abstract Candidatus Neoehrlichia mikurensis (CNM) and Hepatozoon spp. are important vector-borne parasites of humans and animals. CNM is a relatively recently discovered pathogen of humans. Hepatozoon are parasites of reptiles, amphibians and mammals, commonly found in rodents and carnivores worldwide. The present study aimed to determine the prevalence of CNM and Hepatozoon spp. in three species of Microtus and to assess the occurrence of vertical transmission in naturally-infected voles. Molecular techniques were used to detect pathogen DNA in blood and tissue samples of captured voles and their offspring. The prevalence of CNM in the vole community ranged 24–47% depending on Microtus species. The DNA of CNM was detected in 21% of pups from three litters of six infected Microtus dams (two Microtus arvalis and one M. oeconomus) and in 3/45 embryos (6.6%) from two litters of eight CNM-infected pregnant females. We detected Hepatozoon infection in 14% of M. arvalis and 9% of M. oeconomus voles. Hepatozoon sp. DNA was detected in 48.7% of pups from seven litters (6 M. arvalis and 1 M. oeconomus) and in two embryos (14.3%) obtained from one M. arvalis litter. The high prevalence of CNM infections in the Microtus spp. community may be a result of a relatively high rate of vertical transmission among naturally infected voles. Vertical transmission was also demonstrated for Hepatozoon sp. in M. arvalis and M. oeconomus. Our study underlines the significance of alternative routes of transmission of important vector-borne pathogens
    corecore