470 research outputs found
Physics of the interior of a black hole with an exotic scalar matter
We use a numerical code to consider the nonlinear processes arising when a
Reissner-Nordstrom black hole is irradiated by an exotic scalar field (modelled
as a free massless scalar field with an opposite sign for its energy-momentum
tensor). These processes are quite different from the processes arising in the
case of the same black hole being irradiated by a pulse of a normal scalar
field. In our case, we did not observe the creation of a spacelike strong
singularity in the T-region of the space-time. We investigate the antifocusing
effects in the gravity field of the exotic scalar field with the negative
energy density and the evolution of the mass function. We demonstrate the
process of vanishing of the black hole when it is irradiated by a strong pulse
of an exotic scalar field.Comment: 16 pages, 16 figures. Text has been rewritten and restructured,
Penrose diagrams have been added, appendix with convergence tests has been
added. Co-author has been added. Conclusions are unchange
Statistical characteristics of formation and evolution of structure in the universe
An approximate statistical description of the formation and evolution of
structure of the universe based on the Zel'dovich theory of gravitational
instability is proposed. It is found that the evolution of DM structure shows
features of self-similarity and the main structure characteristics can be
expressed through the parameters of initial power spectrum and cosmological
model. For the CDM-like power spectrum and suitable parameters of the
cosmological model the effective matter compression reaches the observed scales
20 -- 25Mpc with the typical mean separation of
wall-like elements 50 -- 70Mpc. This description can be
directly applied to the deep pencil beam galactic surveys and absorption
spectra of quasars. For larger 3D catalogs and simulations it can be applied to
results obtained with the core-sampling analysis.
It is shown that the interaction of large and small scale perturbations
modulates the creation rate of early Zel'dovich pancakes and generates bias on
the SLSS scale. For suitable parameters of the cosmological model and reheating
process this bias can essentially improve the characteristics of simulated
structure of the universe.
The models with give the best description of the
observed structure parameters. The influence of low mass "warm" dark matter
particles, such as a massive neutrino, will extend the acceptable range of
and .Comment: 20pages, 7 figures, MNRAS in pres
Effect of small scale density perturbations on the formation of dark matter halo profiles
With help of a set of toy N-body models of dark halo formation we study the
impact of small scale initial perturbations on the inner density profiles of
haloes. We find a significant flattening of the inner slope to in some range of scales and amplitudes
of the perturbations (while in the case of absence of these perturbations the
NFW profile with is reproduced). This effect may be responsible for
the formation of cuspless galactic haloes.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter
Angular momentum distribution of hot gas and implications for disk galaxy formation
We study the angular momentum profiles both for dark matter and for gas
within virialized halos, using a statistical sample of halos drawn from
cosmological hydrodynamics simulations. Three simulations have been analyzed,
one is the ``non-radiative'' simulation, and the other two have radiative
cooling. We find that the gas component on average has a larger spin and
contains a smaller fraction of mass with negative angular momentum than its
dark matter counterpart in the non-radiative model. As to the cooling models,
the gas component shares approximately the same spin parameter as its dark
matter counterpart, but the hot gas has a higher spin and is more aligned in
angular momentum than dark matter, while the opposite holds for the cold gas.
After the mass of negative angular momentum is excluded, the angular momentum
profile of the hot gas component approximately follows the universal function
originally proposed by Bullock et al. for dark matter, though the shape
parameter is much larger for hot gas and is comfortably in the range
required by observations of disk galaxies. Since disk formation is related to
the distribution of hot gas that will cool, our study may explain the fact that
the disk component of observed galaxies contains a smaller fraction of low
angular momentum material than dark matter in halos.Comment: 30 pages, 12 figures, 4 tables, accepted for publication in Ap
GRB Sky Distribution Puzzles
We analyze the randomness of the sky distribution of cosmic gamma-ray bursts.
These events are associated with massive galaxies, spiral or elliptical, and
therefore their positions should trace the large-scale structure, which, in
turn, could show up in the sky distribution of fluctuations of the cosmic
microwave background (CMB). We test this hypothesis by mosaic correlation
mapping of the distributions of CMB peaks and burst positions, find the
distribution of these two signals to be correlated, and interpret this
correlation as a possible systematic effect.Comment: 12 pages, 16 figures, 1 tabl
Cosmological Co-evolution of Yang-Mills Fields and Perfect Fluids
We study the co-evolution of Yang-Mills fields and perfect fluids in Bianchi
type I universes. We investigate numerically the evolution of the universe and
the Yang-Mills fields during the radiation and dust eras of a universe that is
almost isotropic. The Yang-Mills field undergoes small amplitude chaotic
oscillations, which are also displayed by the expansion scale factors of the
universe. The results of the numerical simulations are interpreted analytically
and compared with past studies of the cosmological evolution of magnetic fields
in radiation and dust universes. We find that, whereas magnetic universes are
strongly constrained by the microwave background anisotropy, Yang-Mills
universes are principally constrained by primordial nucleosynthesis and the
bound is comparatively weak, and Omega_YM < 0.105 Omega_rad.Comment: 13 pages, 5 figures, submitted to PR
Blue spectra and induced formation of primordial black holes
We investigate the statistical properties of primordial black hole (PBH)
formation in the very early Universe. We show that the high level of
inhomogeneity of the early Universe leads to the formation of the first
generation PBHs. %The existence of these PBHs This causes later the appearance
of a dust-like phase of the cosmological expansion. We discuss here a new
mechanism for the second generation of PBH formation during the dust-like
phase. This mechanism is based on the coagulation process. We demonstrate that
the blue power spectrum of initial adiabatic perturbations after inflation
leads to overproduction of primordial black holes with gg if the power index is .Comment: 16 pages, 2 figure
Homogeneous singularities inside collapsing wormholes
We analyze analytically and numerically the origin of the singularity in the
course of the collapse of a wormhole with the exotic scalar field Psi with
negative energy density, and with this field Psi together with the ordered
magnetic field H. We do this under the simplifying assumptions of the spherical
symmetry and that in the vicinity of the singularity the solution of the
Einstein equations depends only on one coordinate (the homogeneous
approximation). In the framework of these assumptions we found the principal
difference between the case of the collapse of the ordinary scalar field Phi
with the positive energy density together with an ordered magnetic field H and
the collapse of the exotic scalar field Psi together with the magnetic field H.
The later case is important for the possible astrophysical manifestation of the
wormholes.Comment: 10 pages, 5 figures each of which has a),b),c),and d) sub-figures. To
be published in "Physical review. D, Particles, fields, gravitation, and
cosmology
- …