247 research outputs found

    The multiple quantum NMR dynamics in systems of equivalent spins with the dipolar ordered initial state

    Full text link
    The multiple quantum (MQ) NMR dynamics in the system of equivalent spins with the dipolar ordered initial state is considered. The high symmetry of the MQ Hamiltonian is used in order to develop the analytical and numerical methods for an investigation of the MQ NMR dynamics in the systems consisting of hundreds of spins from "the first principles". We obtain the dependence of the intensities of the MQ NMR coherences on their orders (profiles of the MQ NMR coherences) for the systems of 200−600200 - 600 spins. It is shown that these profiles may be well approximated by the exponential distribution functions. We also compare the MQ NMR dynamics in the systems of equivalent spins having two different initial states, namely the dipolar ordered state and the thermal equilibrium state in the strong external magnetic field.Comment: 11 pages 4 figure

    Multiple Quantum NMR Dynamics in Dipolar Ordered Spin Systems

    Full text link
    We investigate analytically and numerically the Multiple Quantum (MQ) NMR dynamics in systems of nuclear spins 1/2 coupled by the dipole-dipole interactions in the case of the dipolar ordered initial state. We suggest two different methods of MQ NMR. One of them is based on the measurement of the dipolar temperature in the quasi-equilibrium state which establishes after the time of order T2 after the MQ NMR experiment. The other method uses an additional resonance 45^0 -pulse after the preparation period of the standard MQ NMR experiment in solids. Many-spin clusters and correlations are created faster in such experiments than in the usual MQ NMR experiments and can be used for the investigation of many-spin dynamics of nuclear spins in solids.Comment: 11 pages, 3 figures. accepted for publication in Physical Review

    Relationship between probabilities of the state transfers and entanglements in spin systems with simple geometrical configurations

    Full text link
    In this paper we derive analytical relations between probabilities of the excited state transfers and entanglements calculated by both the Wootters and positive partial transpose (PPT) criteria for the arbitrary spin system with single excited spin in the external magnetic field and Hamiltonian commuting with IzI_z. We apply these relations to study the arbitrary state transfers and entanglements in the simple systems of nuclear spins having two- and three-dimensional geometrical configurations with XXZXXZ Hamiltonian. It is shown that High-Probability State Transfers (HPSTs) are possible among all four nodes placed in the corners of the rectangle with the proper ratio of sides as well as among all eight nodes placed in the corners of the parallelepiped with the proper ratio of sides. Entanglements responsible for these HPSTs have been identified.Comment: 27pages, 10 figure

    Exact results on spin dynamics and multiple quantum dynamics in alternating spin-1/2 chains with XY-Hamiltonian at high temperatures

    Full text link
    We extend the picture of a transfer of nuclear spin-1/2 polarization along a homogeneous one-dimensional chain with the XY-Hamiltonian to the inhomogeneous chain with alternating nearest neighbour couplings and alternating Larmor frequencies. To this end, we calculate exactly the spectrum of the spin-1/2 XY-Hamiltonian of the alternating chain with an odd number of sites. The exact spectrum of the XY-Hamiltonian is also applied to study the multiple quantum (MQ) NMR dynamics of the alternating spin-1/2 chain. MQ NMR spectra are shown to have the MQ coherences of zero and ±\pm second orders just as in the case of a homogeneous chain. The intensities of the MQ coherences are calculated.Comment: 10 pages, 4 figure

    Multiple quantum NMR of spin-carrying molecules in nanopores: high order corrections to the two-spin/two-quantum Hamiltonian

    Full text link
    This paper is devoted to the multiple-quantum (MQ) NMR spectroscopy in nanopores filled by a gas of spin-carrying molecules (s=1/2) in a strong external magnetic field. It turned out that the high symmetry of the spin system in nanopores yields a possibility to overcome the problem of the exponential growth of the Hilbert space dimension with an increase in the number of spins and to investigate MQ NMR dynamics in systems consisting of several hundred spins. We investigate the dependence of the MQ coherence intensities on their order (the profile of the MQ coherence intensities) for a spin system governed by the standard MQ NMR Hamiltonian (the nonsecular two-quantum/two-spin Hamiltonian) together with the second order correction of the average Hamiltonian theory. It is shown that the profile depends on the value of this correction and varies from the exponential to the logarithmic one.Comment: 7 pages, 3 figure
    • …
    corecore