30 research outputs found

    ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype

    Get PDF
    OBJECTIVE: Obesity variably disrupts human health, but molecular-based patients' health-risk stratification is limited. Adipose tissue (AT) stresses may link obesity with metabolic dysfunction, but how they signal in humans remains poorly-characterized. We hypothesized that a transcriptional AT stress-signaling cascade involving E2F1 and ASK1 (MAP3K5) molecularly defines high-risk obese subtype. METHODS: ASK1 expression in human AT biopsies was determined by real-time PCR analysis, and chromatin immunoprecipitation (ChIP) adopted to AT explants was used to evaluate the binding of E2F1 to the ASK1 promoter. Dual luciferase assay was used to measure ASK1 promoter activity in HEK293 cells. Effects of E2F1 knockout/knockdown in adipocytes was assessed utilizing mouse-embryonal-fibroblasts (MEF)-derived adipocyte-like cells from WT and E2F1-/- mice and by siRNA, respectively. ASK1 depletion in adipocytes was studied in MEF-derived adipocyte-like cells from WT and adipose tissue-specific ASK1 knockout mice (ASK1-ATKO). RESULTS: Human visceral-AT ASK1 mRNA (N = 436) was associated with parameters of obesity-related cardio-metabolic morbidity. Adjustment for E2F1 expression attenuated the association of ASK1 with fasting glucose, insulin resistance, circulating IL-6, and lipids (triglycerides, HDL-cholesterol), even after adjusting for BMI. Chromatin-immunoprecipitation in human-AT explants revealed BMI-associated increased occupancy of the ASK1 promoter by E2F1 (r2 = 0.847, p < 0.01). In adipocytes, siRNA-mediated E2F1-knockdown, and MEF-derived adipocytes of E2F1-knockout mice, demonstrated decreased ASK1 expression and signaling to JNK. Mutation/truncation of an E2F1 binding site in hASK1 promoter decreased E2F1-induced ASK1 promoter activity, whereas E2F1-mediated sensitization of ASK1 promoter to further activation by TNFα was inhibited by JNK-inhibitor. Finally, MEF-derived adipocytes from adipocyte-specific ASK1-knockout mice exhibited lower leptin and higher adiponectin expression and secretion, and resistance to the effects of TNFα. CONCLUSIONS: AT E2F1 -ASK1 molecularly defines a metabolically-detrimental obese sub-phenotype. Functionally, it may negatively affect AT endocrine function, linking AT stress to whole-body metabolic dysfunction

    The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells

    No full text
    © Brodie et al. Despite advances in novel therapeutic approaches for the treatment of glioblastoma (GBM), the median survival of 12-14 months has not changed significantly. Therefore, there is an imperative need to identify molecular mechanisms that play a role in patient survival. Here, we analyzed the expression and functions of a novel lncRNA, TALNEC2 that was identified using RNA seq of E2F1-regulated lncRNAs. TALNEC2 was localized to the cytosol and its expression was E2F1-regulated and cell-cycle dependent. TALNEC2 was highly expressed in GBM with poor prognosis, in GBM specimens derived from shortterm survivors and in glioma cells and glioma stem cells (GSCs). Silencing of TALNEC2 inhibited cell proliferation and arrested the cells in the G1\S phase of the cell cycle in various cancer cell lines. In addition, silencing of TALNEC2 decreased the self-renewal and mesenchymal transformation of GSCs, increased sensitivity of these cells to radiation and prolonged survival of mice bearing GSC-derived xenografts. Using miRNA array analysis, we identified specific miRNAs that were altered in the silenced cells that were associated with cell-cycle progression, proliferation and mesenchymal transformation. Two of the downregulated miRNAs, miR-21 and miR-191, mediated some of TALNEC2 effects on the stemness and mesenchymal transformation of GSCs. In conclusion, we identified a novel E2F1-regulated lncRNA that is highly expressed in GBM and in tumors from patients of short-term survival. The expression of TALNEC2 is associated with the increased tumorigenic potential of GSCs and their resistance to radiation. We conclude that TALNEC2 is an attractive therapeutic target for the treatment of GBM

    Codanin-1, the protein encoded by the gene mutated in congenital dyserythropoietic anemia type I (CDAN1), is cell cycle-regulated

    No full text
    Codanin-1 is a ubiquitous protein of unknown function, encoded by the gene mutated in congenital dyseritropoietic anemia type 1. The findings of this paper show that codanin-1 is active in S-phase of the cell cycle. See related perspective article on page 599
    corecore