4 research outputs found

    Development of a Mid-Infrared Sea and Lake Ice Index (MISI) Using the GOES Imager

    Get PDF
    An automated ice-mapping algorithm has been developed and evaluated using data from the GOES-13 imager. The approach includes cloud-free image compositing as well as image classification using spectral criteria. The algorithm uses an alternative snow index to the Normalized Difference Snow Index (NDSI). The GOES-13 imager does not have a 1.6 µm band, a requirement for NDSI; however, the newly proposed Mid-Infrared Sea and Lake Ice Index (MISI) incorporates the reflective component of the 3.9 µm or mid-infrared (MIR) band, which the GOES-13 imager does operate. Incorporating MISI into a sea or lake ice mapping algorithm allows for mapping of thin or broken ice with no snow cover (nilas, frazil ice) and thicker ice with snow cover to a degree of confidence that is comparable to other ice mapping products. The proposed index has been applied over the Great Lakes region and qualitatively compared to the Interactive Multi-sensor Snow and Ice Mapping System (IMS), the National Ice Center ice concentration maps and MODIS snow cover products. The application of MISI may open additional possibilities in climate research using historical GOES imagery. Furthermore, MISI may be used in addition to the current NDSI in ice identification to build more robust ice-mapping algorithms for the next generation GOES satellites

    Development of an algorithm for satellite remote sensing of sea and lake ice

    Get PDF
    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures

    Development of a Mid-Infrared Sea and Lake Ice Index (MISI) Using the GOES Imager

    No full text
    An automated ice-mapping algorithm has been developed and evaluated using data from the GOES-13 imager. The approach includes cloud-free image compositing as well as image classification using spectral criteria. The algorithm uses an alternative snow index to the Normalized Difference Snow Index (NDSI). The GOES-13 imager does not have a 1.6 µm band, a requirement for NDSI; however, the newly proposed Mid-Infrared Sea and Lake Ice Index (MISI) incorporates the reflective component of the 3.9 µm or mid-infrared (MIR) band, which the GOES-13 imager does operate. Incorporating MISI into a sea or lake ice mapping algorithm allows for mapping of thin or broken ice with no snow cover (nilas, frazil ice) and thicker ice with snow cover to a degree of confidence that is comparable to other ice mapping products. The proposed index has been applied over the Great Lakes region and qualitatively compared to the Interactive Multi-sensor Snow and Ice Mapping System (IMS), the National Ice Center ice concentration maps and MODIS snow cover products. The application of MISI may open additional possibilities in climate research using historical GOES imagery. Furthermore, MISI may be used in addition to the current NDSI in ice identification to build more robust ice-mapping algorithms for the next generation GOES satellites

    Development of a Mid-Infrared Sea and Lake Ice Index (MISI) Using the GOES Imager

    Get PDF
    An automated ice-mapping algorithm has been developed and evaluated using data from the GOES-13 imager. The approach includes cloud-free image compositing as well as image classification using spectral criteria. The algorithm uses an alternative snow index to the Normalized Difference Snow Index (NDSI). The GOES-13 imager does not have a 1.6 µm band, a requirement for NDSI; however, the newly proposed Mid-Infrared Sea and Lake Ice Index (MISI) incorporates the reflective component of the 3.9 µm or mid-infrared (MIR) band, which the GOES-13 imager does operate. Incorporating MISI into a sea or lake ice mapping algorithm allows for mapping of thin or broken ice with no snow cover (nilas, frazil ice) and thicker ice with snow cover to a degree of confidence that is comparable to other ice mapping products. The proposed index has been applied over the Great Lakes region and qualitatively compared to the Interactive Multi-sensor Snow and Ice Mapping System (IMS), the National Ice Center ice concentration maps and MODIS snow cover products. The application of MISI may open additional possibilities in climate research using historical GOES imagery. Furthermore, MISI may be used in addition to the current NDSI in ice identification to build more robust ice-mapping algorithms for the next generation GOES satellites
    corecore